K_L→π[±]e[∓]Ve⁺e⁻ (Ke3ee) その物理と崩壊分岐比測定

大阪大学理学研究科 山中卓研究室 小寺克茂

Ke3eeの崩壊様式

● Ke3:セミレプトニック崩壊

仮想光子はKe3の 荷電外線や崩壊頂 点から放出される

Ke3eeの崩壊様式

● Ke3:セミレプトニック崩壊

仮想光子はKe3の 荷電外線や崩壊頂 点から放出される

Ke3eeの崩壊様式

● Ke3:セミレプトニック崩壊

仮想光子はKe3の 荷電外線や崩壊頂 点から放出される

本研究の目的

仮想光子 γ*(→e⁺e⁻) を probe として K-π 構造を研究

低エネルギーQCD が支配→厳密解を得られない.

現象の再現

→理論の検証

長い歴史を 持つが未だ発展途上

Chiral Perturb.Th.(運動量²で展開)→Ke3:0(p⁶)
→ 究極的には QCD の検証
実験はこのオーダの評価に達していない

• |Vus|f+(0) ↑ CKM行列 要素

Ex で展開) \rightarrow Ke3: $\mathcal{O}(\mathcal{D}^6)$ Chiral Pert Ke3 崩壊幅の 証 測定値から 評価に達していない Vus|f+(0) K_{l} **PDG KTEV** 理論 $f_{+}(0)(1-|V_{ud}|^2-|V_{ub}|^2)^{1/2}$ Leutwyler and Roos [9] Bijnens and Talavera [11]

0.215

0.225

0.22

Becirevic et al. [12]

0.21

Jamin et al. [13]

仮想光子のメリット

実光子の放出からK-π structure を探る研究

荷電外線の制動放射に うずもれたわずかな Structure dependent な 放射を探す

仮想光子のメリット

実光子の放出からK-π structure を探る研究

荷電外線の制動放射に うずもれたわずかな Structure dependent な 放射を探す

ニュートリノを 観測できないために CM系光子エネルギー に不定性 →困難

仮想光子のメリット

不変質量なら不定性なく測定ができる!!

$$\mathbf{e}^{-}$$
 ex. \mathbf{e}^{+} $\cdots - 2e(p_1 + p_2)^{\mu} 2L_9 q^2 \cdots$ $- q^2 = (Me^+e^-)^2 \ge 0$ によって見える構造が存在

実光子:電磁カロリメータのみの情報

e⁺e⁻ pair: 2本のトラッカー情報との組み合わせ

今日の到達点

• Ke3eeを ChPT NLO (p4) [by Tsuji, osaka U] でどこまで再現できるか?

Data-MC にdiscrepancy →高次項に感度?

• BR(Ke3ee) を決定

実験 KTeV experiment

Event selection

- 1) Four track event with good Vertex quality
- 2) PID $(\pi^{\pm}e^{\mp}e^{+}e^{-})$
 - E/p

Energy on Csl / Momentum of track

Backgrounds

mode	to be acceptable
$K_L \rightarrow \pi^+ \pi^- \pi^0_D (\pi^0 \rightarrow e^+ e^- \gamma)$	$\pi^{\pm} \xrightarrow{\text{fake}} e^{\pm}$
$K_L \rightarrow \pi^+ \pi^- \pi^0_{4e} (\pi^0 \rightarrow e^+ e^- e^+ e^-)$	$\left\{ \begin{array}{c} \text{one } \pi^{\pm} \\ \text{one } e^{\pm} \end{array} \right\}$
$K_L \rightarrow \pi^{\pm} e^{+} \vee \pi^{0}_{D} (\pi^{0} \rightarrow e^{+} e^{-} \vee)$	そのまま O K
$K_L \rightarrow \pi^{\pm} e^{+} \vee \gamma (\gamma \rightarrow e^{+} e^{-}/_{materials}^{in})$	そのまま O K

Rejection of $K_L \rightarrow \pi^+\pi^-\pi^0$

Rejection of $K_L \rightarrow \pi^+\pi^-\pi^0$

Rejection of $K_L \rightarrow \pi^+\pi^-\pi^0$

 $(P//\pi^0)^2$

 $K \rightarrow \pi^+\pi^-\pi^0_D$: 86.6% is rejected

 $K \rightarrow \pi^+ \pi^- \pi^0_{4e}$: 57.3% is rejected

Ke3ee (signal): 15.6% is lost

Sq.Longitudinal momentum of neutrino; $P_{V||}^{*2}$

Normalization mode

$$K_L \rightarrow \pi^+ \pi^- (\pi^0 \rightarrow e^+ e^- \gamma)$$

- Main analysis $\pi^+\pi^-e^+e^-$ ignoring γ
- Cross check $\pi^+\pi^-e^+e^-\gamma$ full reconstruction

Normalization mode Data/MC comparisons

MC の E_k 分布は,この モード で data に対して微調整した

Systematic uncertainties of Branching fraction(%)

Source of uncertainty	(%)
Radiative corrections	+1.00
Photon det. in norm.	+0.83
vertex χ ²	±0.70
π loss in TRD	±0.47
E _K distribution	- 0.35
Cut-off Mee	- 0.18
e [±] ineff. in E/p	±0.08

Source of uncertainty	(%)
e [±] ineff. in TRD	±0.08
π^{\pm} ineff. in E/p	±0.03
BG. Ke3γ	±0.07
BG. K ₊₋₀ Dalitz	±0.04
MC stat. Ke3ee	±0.27
MC stat. BG.	±0.14
MC stat. Norm.	±0.12

Total +1.59 - 1.00(%)

BR(Ke3ee)

Preliminary $BR(Ke3ee; Me^+e^- > 0.005 GeV/c^2)$ $= [1.606 \pm 0.012(stat.signal)]$ ± 0.003 (stat.norm.) +0.026 - 0.016 (systematic) ± 0.045 (external)] $\times 10^{-5}$ from $BR(K_L \rightarrow \pi^+\pi^-\pi^0_D)$

Study of K-IT structure

Invariant Mass; Mπeee, Meee

0.35

0.35

Significance of slopes

Mee が π-e 構造に敏感である可能性を示唆.

- NLO(p6) 以上 の構造 ? or
- Radiative (imaginary) correction ?

Invariant Mass; Me+e-

-Only this spectrum has a significant slope

As an example of terms of $E\gamma(CM)$ of Ke3 γ by Gasser et al.

まとめ

Preliminary

- $BR(Ke3ee; Me^+e^- > 0.005 \ GeV/c^2) =$ [1.606±0.012(stat.signal) $^{+0.026}_{-0.016}$ (systematic) ±0.045(external)] ×10⁻⁵
- ChPT NLO(p⁴) は Ke3ee event をよく再現
- Me+e-はさらに詳細な構造をみせている?
 - NLO(p⁶) ?
 - QED correction (imaginary)?