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ABSTRACT

This thesis describes the measurement of three parameters of the neutral kaon sys-

tem by the KTeV collaboration at Fermi National Accelerator Laboratory. Us-

ing 125 million semi-leptonic kaons decays, we measure the asymmetry between

K → π−e+ν̄e and K → π+e−νe decays downstream of a regenerator. We combine a

sophisticated model of the charge asymmetry with these data to determine precisely

φf−f̄ , δL, and <(x). The regeneration phase of carbon, φf−f̄ , previously unmeasured

in the KTeV momentum range, is found to be consistent with the optical model pre-

diction:

φf−f̄ − φanalyticity = −0.70◦ ± 0.88◦ (stat)± 0.91◦ (syst) .

A measure of the CP violating KL asymmetry yields:

δL = (3480± 89 (stat)± 53 (syst))× 10−6 .

This result is more precise than any outside of the KTeV collaboration. We also

measure the real part of the semi-leptonic ∆S 6= ∆Q amplitude, x, more precisely

than in any other experiment. It is consistent with zero:

<(x) = (12± 33 (stat)± 39 (syst))× 10−4 .

x
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CHAPTER 1

INTRODUCTION

Experiments that measure the behavior of the neutral kaon, such as the one de-

scribed in this thesis, are complex undertakings requiring millions of dollars in

equipment and hundreds of person-years dedicated to construction, maintenance,

monitoring, and analysis. Although the investment required is large, these experi-

ments have produced a handsome return in the form of insight into the symmetries

that underpin the Standard Model. The investigation that follows derives its results

from a precise study of semi-leptonic decays of the neutral kaon. These decays are

of particular interest for two reasons: first, they shed light on deeper questions of

CPT conservation and causality, and second they provide an experimental probe

that is sensitive to unexpected decay mechanisms and exchange resonances.

Prior to 1957, all observed interactions of matter conserved the symmetries of

charge conjugation (C), parity (P) and time reversal (T). Lee and Yang [1] mo-

tivated the observation by several experiments of parity violation in nuclear de-

cay [2, 3, 4], the product CP elegantly replaced the individual symmetries of C

and P. In 1964, Christenson, Cronin, Fitch and Turlay [5] observed indirect CP

violation in the neutral kaon system. Subsequent interest in the mechanisms of CP

violation resulted in a huge experimental effort focused on the kaon system. The

brass ring has been the observation of direct CP violation. The high kaon flux

and high detector precision required for this search, together with a strong interest

1
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in the rare decays of kaons, motivated the development of KTeV, an exceptionally

sensitive detector at Fermilab. This thesis will exploit the mechanism which makes

the kaon system ideal for probing CP violation in order to test CPT symmetry,

causality and our understanding of the fundamental components of the Standard

Model.

Other precision KTeV measurements focus on the oscillation seen in the de-

cay rate of K → π+π− (Kπ2) behind a thick regenerator. It is relatively easy to

determine the decay distribution of Kπ2 events because one fully reconstructs the

event. Our analysis will focus on K0 → πeνe decays (Ke3). These semi-leptonic de-

cays provide unique information. The strength of Ke3 asymmetry at small values of

proper time is sensitive to violations in the ∆S = ∆Q rule. At large values of proper

time, the asymmetry is a direct measurement of the real part of the kaon mixing

parameter εK . Through intermediate values of proper time, the charge asymmetry

is sensitive to the regeneration phase but not to any final state interactions. Phase

measurements at low energies give clues to behavior at higher, even inaccessible,

energies. Combining the phase measurement from this thesis with the regeneration

amplitude measurement made with Kπ2 events probes the scattering behavior of

kaons beyond the current observable energy range. Experimentally, the asymmetry

can be measured without the simulation-dependent normalization which is required

for Kπ2 measurements. But, analysis challenges remain due to the missing neutrino.

Simulation will still be required for understanding kaon momentum distribution as

well as the considerable background from scattering in the regenerator.

This chapter introduces the kaon system (Section 1.1) with a focus on its inter-

action with matter (Section 1.2), then describes the key role that kaon decays to 2π

(Kπ2) have in probing CP violation (Sections 1.3 and 1.4). These studies motivate

the introduction of the theoretical underpinnings of analyticity (Section 1.5), and
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Figure 1.1: Overview of the Motives and Goals of this Thesis

the use of the asymmetry of semi-leptonic kaon decays downstream of a regenerator

to measure the phase and magitude of an analytic scattering amplitude over a range

of momenta (Section 1.6). In addition, the assumption that semi-leptonic decay is

principally a ∆S = ∆Q process is relaxed and a test for surprising violations of this

rule is described. Figure 1.1 provides an overview of the motivation and goals of

this thesis.



4

1.1 Kaon Phenomenology

The kaon system is a two state system with mass eigenstates determined by the

strangeness (S) conserving strong force and decay eigenstates determined by the

weak force:

K0 = sd ←− Strangeness = +1

K0 = sd ←− Strangeness = −1 . (1.1)

K0 and K0 are CP conjugates of one another. In the notation where CP is seen as

a Hilbert space operator:

CP|K0〉 = eiπφ|K0〉

CP|K0〉 = eiπφ|K0〉 . (1.2)

The CP violation in decay is very small and so the decay eigenstates are most easily

written as a perturbation of the CP eigenstates (ironically K1 is even and K2 is

odd).

|K1〉 =
1√
2
(|K0〉+ |K0〉)

|K2〉 =
1√
2
(|K0〉 − |K0〉) . (1.3)

Prior to 1964, these states were thought to be equivalent to the observed short- and

long-lived kaon states. K1 decayed to the CP-even 2π final state rapidly due the

large phase space available. K2, being CP-odd, was precluded from decay to the 2π

state, so decayed more slowly to the available 3 particle final states (3π, Ke3). The
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observation by Christianson, Cronin, Fitch and Turlay [5] that K2 can decay to a

2π final state, necessitated a new model. This led to the introduction of an effective

Hamiltonian, H, that would dynamically mix the CP eigenstates. In the K0, K0

basis the most general form is

H =









M11 M12

M∗
12 M22









− i

2









Γ11 Γ12

Γ∗12 Γ22









. (1.4)

Here the diagonal elements are real and the off diagonals are complex. The result

is a leading hermitian term, determined by coupling within the kaon system, and a

second anti-hermitian term, determined by coupling outside the kaon system. In the

absence of any constraints from C,P,T or combinations, this hamiltonian still has

the 8-degrees of freedom of a completely general complex matrix. The eigenvectors

of this system will be the observed states, KS and KL. Constraints from physical

symmetries reduce the original 8-degrees of freedom. The assumption of CPT

conservation results in a pair of constraints:

M11 = M22

Γ11 = Γ22 (1.5)

The assumption of CP conservation results in a pair of constraints:

Im(M12) = 0

Im(Γ11) = 0 (1.6)

If all of these constraints are applied, the resulting eigenvectors are K1 and K2.

Releasing the CP constraint and solving gives new eigenvectors, most easily written
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in terms of K1 and K2:

|KS〉 =
1

√

1 + |εK |2
(|K1〉+ εK |K2〉) , and

|KL〉 =
1

√

1 + |εK |2
(εK |K1〉+ |K2〉) , (1.7)

where:

εK =
Im(M12)− i

2
Im(Γ12)

i∆m− 1
2
∆Γ

,

∆m = mL −mS = 2 · <(M12) , and

∆Γ = ΓS − ΓL = −2 · <(Γ12) . (1.8)

These expressions are accurate to first order in εK . This form emphasizes that

CP violation in either the mass term (M12) or the decay term (Γ12) acts as a

perturbation to a base system that is dominantly CP conserving. Measurements

of the kaon system show that the CP violation proceeds dominantly through the

mass matrix, typified by diagrams like Figure 1.2, even to the point of inspiring so

called super-weak theory [6], which postulates a unique CP violating mechanism in

the mass matrix and no CP violation through the decay channel, i.e. Im(Γ12) = 0.

This results in the so called super-weak phase,

φSW = Arctan
(

2∆m

∆Γ

)

. (1.9)

This is very close to being the exact phase of εK , and consequently this angle is used

as the reference against which other CP violating phases are compared. For current

best values of ∆m and ∆Γ, φSW is 43.4◦. Releasing the constraints on H from

CPT symmetry, but assuming the departure to be small, results in an additional
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perturbative term, again arising from violation in either the mass term or the decay

term:

|KS〉 =
1

√

1 + |εK + δK |2
(|K1〉+ (εK + δK)|K2〉) ,

|KL〉 =
1

√

1 + |εK − δK |2
((εK − δK)|K1〉+ |K2〉) , and

δK =
i
2
(M22 −M11) +

1
4
(Γ22 − Γ11)

i∆m− 1
2
∆Γ

. (1.10)

This describes indirect CPT violation. Other possible mechanisms for CPT viola-

tion are plentiful and could manifest themselves in many different ways.

Figure 1.2: Second Order Box Diagram for K0- K0 Mixing

1.2 Regeneration

In order to understand how precision CP tests are performed in the KTeV appa-

ratus, it is first necessary to understand the phenomenon of regeneration. Due to

the asymmetry of the interaction of K0 and K0 with matter (K0 is more strongly

absorbed), a pure KL beam traversing a matter field is attenuated but also develops

a KS component. To see how this happens, let f and f̄ be the forward scattering



8

amplitudes of a single atom for K0 and K0, respectively. This adds a scattering

term to the effective Hamiltonian of the system:

Hscat = −2N π β γ





f
k

0

0 f̄
k



 . (1.11)

Here N is the number density of the scatterers, k is the kaon momentum, and β and

γ are the usual relativistic parameters (β = v/c; γ = 1/
√

(1 − β2)). The result is

new eigenstates for the forward scattering kaons. After solving the new eigensystem,

the resulting time evolution matrix in the KS, KL basis is (assuming CPT):

e−(
Γ̄
2
+Im(g+))τ





cosh(iδτ)− h
δ
sinh(iδτ) g−

δ
sinh(iδτ)

g−
δ
sinh(iδτ) cosh(iδτ) + h

δ
sinh(iδτ)



 , (1.12)

where:

h = −∆m

2
− i∆Γ

4
,

Γ̄ =
ΓS + ΓL

2
,

g± = πN
(f ± f̄)

k
, and

δ =
√

h2 + g2− . (1.13)

There is a whole lot of physics in this solution. For an incident KL beam, the

resulting output beam has a mixed amplitude, which can be written as ∼|KL〉 +

ρ|KS〉. This is the definition of the regeneration amplitude, ρ. Although this full

matrix description will be used in all subsequent analysis, the thick regenerator

formula is a very good approximation and demonstrates the relevant mechanisms
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we will exploit in our analysis:

ρ = iπNL
f − f̄
k

g(L) ,

g(L) =
1− e−i(λS−λL) Lβγ
i(λS − λL) L

βγ

, and

λS,L = mS,L −
i

2
ΓS,L . (1.14)

The function g(L) depends on geometry alone. Equation 1.14 shows the essential

dependence that the phase of ρ has on the phase of f − f̄ . This dependence is

necessary to proceed with measurements of the CP violating phases

φρ =
π

2
+ φf−f̄ + φg . (1.15)

1.3 The CP Violating Phases

To quantify CP violation, KTeV observed the decay rates of the kaon system.

Specifically, the ratio of the decay amplitudes of KS and KL to various final states

(FS) plays a huge role and is given the name η,

ηFS =
〈FS|H|KL〉
〈FS|H|KS〉

. (1.16)

We will show that η+− and η00 (short hand for ηπ+π− and ηπ0π0 ) are measures of

CP violation, and their phase, if CPT is conserved, is prescribed to be ‘very near’

the super-weak phase, as constrained by the magnitude of direct CP violation. To

do so, we first introduce direct CP violation. Assuming CPT symmetry,

η+− =
εK〈π+π−|H|K1〉+ 〈π+π−|H|K2〉
〈π+π−|H|K1〉+ εK〈π+π−|H|K2〉

and
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η00 =
εK〈π0π0|H|K1〉+ 〈π0π0|H|K2〉
〈π0π0|H|K1〉+ εK〈π0π0|H|K2〉

. (1.17)

Now the decay amplitudes are decomposed into isospin states,

|π+π−〉 =

√

2

3
|I = 0〉+

√

1

3
|I = 2〉 , and

|π0π0〉 = −
√

1

3
|I = 0〉+

√

2

3
|I = 2〉 . (1.18)

Let δI represent the phase shift due to final state interactions via the strong force

and AI be the isospin dependent part of the decay amplitude. Then,

〈I = 0|H|K0〉 = A0e
iδ0 , and

〈I = 2|H|K0〉 = A2e
iδ2 , (1.19)

and under CPT,

〈I = 0|H|K0〉 = A∗0e
iδ0 , and

〈I = 2|H|K0〉 = A∗2e
iδ2 . (1.20)

After some simplification (see [7] for details), the result is,

η+− = εK +
ε′

1 + ω/2
,

η00 = εK − 2
ε′

1− ω/2 ,

ε′ =
iIm(A2)√

2A0

ei(δ2−δ0) , and

ω =
Re(A2)

A0

ei(δ2−δ0) . (1.21)
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During this simplification the K0, K0 relative phase (φ from Equation 1.2) has been

set such that A0 is real. Note that measurements of the final state interactions show

δ2 − δ0 = −42◦ ± 4◦ [8], resulting in ε′/ε having a very small imaginary component

(because it is largely parallel to φSW ).

If we now relax the CPT constraint any number of problems might arise. For

example, imagine that CPT violation were, like CP violation, larger in the mixing

matrix than in the decay amplitudes. Then:

η+− = εK − δK +
ε′

1 + ω/2
, and

η00 = εK − δK − 2
ε′

1− ω/2 . (1.22)

Noting that according to Equation 1.10, δK will be orthogonal to εK , any observation

of non-zero φ+− − φSW is a signature of CPT violation. This test motivates the

study of this phase with the best precision available.

1.4 Measuring CP Sensitive Phases

The strategy that the KTeV collaboration employs for measuring the CP sensitive

phases hinges on the change in decay rate as a function of time downstream of the

regenerator. For kaons emerging from a regenerator with flux Ψ, the decay rate is:

R = |〈FS|Ψ(τ)〉|2

= Ψ
∣

∣

∣

∣

e−τ(
ΓL
2
+imL) 〈FS|KL〉+ e−τ(

ΓS
2
+imS)ρ 〈FS|KS〉

∣

∣

∣

∣

2

(1.23)

= Ψ |〈FS|KS〉|2
(

e−ΓLτ + |ρ
η
|2e−ΓSτ + |ρ

η
|e−(ΓS+ΓL)τ/2 cos(∆mτ + φρ − φη)

)

.
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The result is that a careful measurement of the evolution of the decay rate of

K → π+π− allows the extraction of the phase term, φρ − φ+−. In order to per-

form our sensitive test of CPT, by comparing φ+− with the superweak phase, the

regeneration phase must be determined precisely.

1.5 Analyticity

The technique KTeV employs to extract φρ is to measure the magnitude of ρ as

a function of momentum and to infer the phase using the analyticity of the scat-

tering amplitudes and our understanding of the entire spectrum of kaon-nucleon

interactions [7, 9]. How is this phase determined? At the heart of the scattering

theory is the expansion of the scattered field into a series of outgoing waves. Start-

ing from the fundamental assumptions of weak causality and CPT conservation,

field theory predicts that the phase of the forward amplitude is related to its mag-

nitude [10]. The mathematics behind this relationship begins with the Titchmarch

theorem [11], which applies to ordinary functions, and extends its results to gener-

alized functions [12]. Our analytic functions are the scattering amplitudes f and f̄

from Equation 1.11 above. These are each analytic functions of the center of mass

energy,
√
s. The alert reader will note that E, p, and

√
s are not the same quantity;

however, at our energies they are very close. The following sketch will play some-

what fast and loose with these terms. See Block and Cohn [13] on this topic for a

more rigorous treatment.

Since the C, P and T conserving strong force completely dominates the kaon-

nucleon scattering process, the scattering amplitudes are related (in similar fashion
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to the K0 −K0 system) by:

f(E) = −f̄(−E) . (1.24)

For the purpose of studying regeneration, it is easiest to symmetrize the system and

work with:

f±(E) =
f(E)± f̄(E)

2
. (1.25)

These terms have already been seen to be the relevant players in an analysis of

regeneration. Their symmetry, namely,

f±(E) = ±f±(−E) , (1.26)

can be shown to simplify the relations of analyticity. The relationship between

real and imaginary parts mandated by the Cauchy-Riemann relations can be made

explicit:

Ref+(E) = ERef+(0) + P
2E2

π

∫ ∞

0

Imf+(x)

x(x2 − E2)
dx , and (1.27)

Ref−(E) = E
d

dx
Ref−(x)|x=0 + P

2E3

π

∫ ∞

0

Imf+(x)

x2(x2 − E2)
dx . (1.28)

This form reveals a key feature of the scattering amplitude. Contributions to the

total cross-section at all energies (proportional to the imaginary part of the am-

plitude) contribute to the phase at a given energy. The weight with which they

contribute diminishes rapidly both as the energy grows and as the energy difference

grows, but the magnitude of such effects can have an impact on the application of

these relations. The objection, raised by Kleinknecht and Luitz [14], is that the
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integral of Equation 1.28 has no upper limit and that consequently an exotic res-

onance above our energy could feed down into our momentum range and foul our

measurement. Careful analysis of this notion has severely limited the magnitude of

any such contribution (see Briere and Winstein [15]).

We measure |f−| quite well in our momentum range and it is seen to be very

close to obeying a pure power law (∼pα). In this case it is useful to recast the Equa-

tions 1.27 and 1.28 into the so called Derivative Analyticity Relations [16, 17, 18],

Re

(

f+
pα

)

= tan

(

π

2

(

α− 1 +
∂

∂ ln(p)

))

Im

(

f−
pα

)

, and (1.29)

Re

(

f−
pα

)

= tan

(

π

2

(

α +
∂

∂ ln(p)

))

Im

(

f−
pα

)

. (1.30)

The notation involving the tangent of an operator is shorthand for the appropriate

power series expansion. It is worth noting that this operator is linear in an un-

usual double sense. Either the sum or the product of any two functions satisfying

Equation 1.30 is itself a solution. Substituting our power law into this equation,

namely,

<(f−) = C · pα · sin(φf−) , and

=(f−) = C · pα · cos(φf−) (1.31)

gives the relation between the power and the phase that to first order describes f−:

φf− = −π
2
(1 + α) . (1.32)

The measured power law behavior is very close to what is expected based on

extrapolating Regge-pole exchange theory from lower energies up to our energy
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range. Regge-pole theory explains the scattering amplitude as an expansion in

terms of the first order T-channel exchange of a number of hadronic resonances.

The ω, ρ, A2 and f , correspond to observed resonances. The exceptional Reggeon

is the Pomeron, P , which is structurally more complicated, but motivated by the

observed rise of hadronic cross-sections at high energy. Each of these intermidiaries

carries certain quantum numbers which bear on their behavior under symmetry

operations. For our regenerator, which is very nearly isoscalar (Dominantly 12C),

the contribution to regeneration of all poles but the ω are removed. Three effects

leave some residual non-power-law behavior. First, our regenerator is not a perfect

isoscalar. The presence of hydrogen in addition to carbon allows a small contribution

from ρ-exchange to contribute as well. Second, the minute difference in energy

dependence of the cross-sections of K-n and K-p causes nuclear screening to induce

a slight modification of the momentum dependence of f−. The principal uncertainty

that remains is the contribution from inelastic screening. Within a nucleus, a scatter

can proceed through an intermediate state that is not a kaon. Model dependence in

the treatment of this term dominates the uncertainty in the shape of f−.

1.6 Phase in Ke3 Asymmetry

To measure the regeneration phase independently of obsevations of the Kπ2 final

state, we look to the charge asymmetry of Ke3 decays. The relative decay rates

for K → π−e+ν̄e and K → π±e∓νe can be computed. First order diagrams of the

decay are shown in Figure 1.3. The next two sections develop treatments of the Ke3

asymmetry, first assuming that these two diagrams are the only relevant processes,

and then imagining what the first order effect of the higher-order diagrams would

be. The first case will provide a mechanism for extracting the regeneration phase,
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Figure 1.3: First Order Diagrams for K → π−e+ν̄e and K → π+e−νe.

φρ, and the KL asymmetry, δL. The second case will introduce the parameter x as a

measure of the contribution of the higher-order diagrams and reveal our sensitivity

to this complex parameter.

1.6.1 When ∆S = ∆Q

The lepton charge effectively tags the strangeness of the parent kaon. In the context

of the decay rate of Equation 1.23, we have,

ηπ−e+ν = 1,

ηπ+e−ν̄ = −1,
〈

π−e+ν|KS

〉

= 1 + εK , and

〈

π+e−ν̄|KS

〉

= 1− εK . (1.33)

The charge asymmetry is defined by Equation 1.34,

δ(τ) =
R(π−e+ν)−R(π+e−ν)

R(π−e+ν) +R(π+e−ν)
, (1.34)
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which after a good deal of simplification becomes:

δ(τ) ' 2 |ρ| e−
ΓS−ΓL

2
τ cos(∆mτ + φρ) + 2 · <(εK) . (1.35)

Here we can see that the phase of the oscillating term is now precisely a measure

of the regeneration phase. The advantage of having only a single pion in the decay

products is that no final state interactions alter this phase. Note that, as expected,

the prediction for the asymptotic asymmetry, δL, is 2·<(εK). By fitting the evolution

of this asymmetry precisely, we can extract both the phase and δL.

Carithers [19] measures φf−f̄ for carbon by fitting the observed asymmetry using

this functional form. At the lower energy (4.5-11.2 GeV) of that experiment, the

value extracted was −40.9◦ ± 2.6◦. With improved statistics we can make a similar

measurement in our higher momentum range and reduce the error by a factor of 2.

In addition, the asymmetry at large proper time can be measured precisely

enough to eclipse all prior measurements. Although it is not as statistically powerful

as the measurement made by analyzing KTeV’s data without the presence of the

regenerator, our value will contribute significantly to the overall world average.

1.6.2 When ∆S 6= ∆Q

What happens when we release the ∆S = ∆Q rule? The typical approach to

allowing such a violation is to introduce x and its CPT conjugate, x?, defined (in

the context of CPT conservation) as follows,

x =

〈

K+
e3|M |K0

〉

〈

K+
e3|M |K0

〉 , and

x? =

〈

K−e3|M |K0
〉

〈

K−e3|M |K0
〉 . (1.36)
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Allowing x to be non-zero and propagating through our equations for the asymmetry

(to first order in x and |ρ|), the new expression for the proper time evolution of the

asymmetry is:

δ(τ) = (1 + 2 · <(x))
(

2 |ρ| e−
ΓS−ΓL

2
τ cos(∆mτ + φρ) + 2 · <(ε)

)

. (1.37)

Note that no first order Im(x) terms remain.

The CPLEAR experiment’s measurement, <(x) = (−18± 41± 45)× 10−4[20],

is the best current limit on this parameter. The Standard Model predicts a tiny

value, ∼10−8, hence any observable deviation from zero at the current level of pre-

cision would uncover a dramatic input from new physics.

1.7 Summary

We now have three tools in hand to take precise measurements of the asymmetry

evolution behind the KTeV regenerator and place them into the context of the

Standard Model. Each tool addresses very different physics. Precise measurement

of δL pushes the state of the art in understanding the CKM unitarity triangle.

Seeking limits on <(x), in essence, searches for exotic interactions that would break

our current understanding of semi-leptonic kaon decay. Checking ∆φρ probes CPT

and causality through the analyticity relations, although any observed violation

might also be attributable to the impact of an exotic resonance on kaon-nucleon

scattering.

Figure 1.4 shows a flow diagram for the way forward. Chapter 2 will introduce

the KTeV detector and show that it is well suited to observe the decays needed, and

that although the neutrino escapes, the observed part of the decay will have enough

kinematic information to allow us to measure the time evolution of the asymmetry.
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Figure 1.4: Flow Chart of the Analysis

Chapter 3 will descibe the 1997 run and the methods used to record the decays in the

detector. Chapter 4 will give the details of the analysis cuts used to select a clean,

well understood sample of Ke3 events. The detailed detector simulation is critical

in understanding the background and in quantifying the correlation of observable

quantities in the event sample with the proper time. Chapter 5 will describe the

simulation, illustrate its accuracy both for the signal and for the scattered back-

grounds, and discuss the impact of the non-Ke3 backgrounds observed. Chapter 6

will discuss the fitter and detail the careful allowances made for uncertainties in

the background. Chapter 7 will catalog the broad range of systematic concerns and

quantify their impact on the final fit results. Finally, Chapter 8 will summarize and

put our results in the context of past measurements.



CHAPTER 2

EXPERIMENTAL TECHNIQUE

The KTeV detector has two configurations. When set up for E799, the focus is on

rare decays of the KL and Λ. When set up for E832, the focus is on effects related

to the regenerator. The E832 data is of interest in this analysis. In order to obtain

the best possible statistics for the <(ε′/ε) measurement, the E832 configuration

is a streamlined K → 2π event collection machine. The large fluxes and precise

measurements required for this effort also provide an ideal source of regenerator Ke3

decays.

The regenerator Ke3 analysis faces two major hurdles due to the undetectable

neutrino and resulting incomplete reconstruction of the parent kaon’s momentum.

First, a probabilistic approach to the proper time of the decay must be employed

since the total momentum of the parent is ambiguous. Second, non-coherent scatters

in the regenerator, which can be removed to a large degree in the 2π analysis by

limiting the transverse momentum of the parent, remain as a very large background

since this kinematic handle is unavailable.

This chapter will give a brief overview of the KTeV apparatus. Then the strategy

for addressing the twin problems of incomplete reconstruction will be introduced. A

description of the technique used to cancel geometric acceptance differences between

oppositely charged decays will follow. Finally, a brief discussion of residual charge

asymmetries is included.

20
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2.1 The KTeV Apparatus

The KTeV apparatus is spread over two large experimental halls on the Fermilab

site. The upstream hall is dedicated to turning the high energy, high flux proton

beam provided by the TeVatron into, clean, high flux kaon beams. The downstream

hall houses the active portion of the KTeV detectors. Sections 2.1.1 describes the

target hall, and Section 2.1.2 describes the active detector elements.

2.1.1 Beamline
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Figure 2.1: Geometry of the KTeV secondary beamline. The movable absorber and
regenerator articulate between the east (x < 0) and west (x > 0) beams at the
conclusion of each spill. Note the disparity in scales between the x and z axis.

The KTeV beamline, pictured in Figure 2.1, is optimized to produce two clean,

high flux KL beams. For 20 seconds out of every minute the TeVatron provides

a 900 GeV proton beam focused on the KTeV target. Each minute long cycle is

referred to as a spill. Within the spill, protons arrive in 1-2 ns “buckets” at 19

ns intervals. Typical proton fluxes as measured upstream of the target were on



22

the order of 1 − 5 × 1012 per spill or 1000 − 5000 per bucket. These protons hit

a 3 × 3 × 300 mm beryllium oxide target, producing copious secondaries of all

varieties. The target serves as the origin of the KTeV coordinate system, with Z-

axis oriented in the secondary beam direction, Y -axis pointing up, and the X-axis

increasing toward detector “west”. Large magnets immediately downstream of the

target and between the primary and slab collimators (not shown in the figure) sweep

away all charged particles. A common absorber removes the photon component as

the beams enter the collimation system. Twenty-eight meters downstream of the

target the entire beamline and decay region is evacuated. The collimators form

2 beams, which by 120 meters downstream of the target are dominantly KL and

neutrons with some residual neutral hyperons.

The <(ε′/ε) measurement is statistically best served by equal numbers of regen-

erator and vacuum decays. Given the same KL flux, the regenerator beam has a

much higher rate of 2π decays; therefore, a movable absorber shadows the regenera-

tor, which alternates between the east and west beams on a spill by spill basis. The

regenerator kaons, which this analysis focuses on, traverse 18 inches of beryllium in

the movable absorber plus 20 inches of beryllium and 3 inches of lead in the com-

mon absorber. After ∼100 meters of additional flight to allow the KS component to

decay away, the resulting KL beam has a spectrum with a peak flux near 50 GeV,

falling to half the peak below 30 GeV and above 85 GeV.

2.1.2 Detector

Figure 2.2 shows the layout of the detector. Its active elements include: the regenera-

tor, which is effectively part of the beamline, in addition to being a detector element;

the charged spectrometer, responsible for the measurement of all components of the

charged particle momenta; the calorimeter, optimized for the measurement of pho-
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ton positions and energies but highly effective as a tool for differentiating between

pions and electrons; and the extensive veto systems, responsible for rejecting events

with products not fully contained within the sensitive portions of the detector. This

section will address each of these four systems in turn.
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Figure 2.2: Plan View of the KTeV Detector

The Regenerator

The primary role of the regenerator is to convert incident KL particles into a well

understood KL and KS mixture. The regenerator is composed of a stack of 84

10 × 10 × 2 cm blocks of scintillator (density 1.032 g/cm3, composition: car-

bon:hydrogen::1:1.1 by weight) each viewed by two phototubes. At the end is a

final 10 × 10 × 2 cm block composed of alternating 5.6 mm layers of lead (density

11.35 g/cm3) and 4 mm layers of scintillator, also viewed by a pair of phototubes.
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Figure 2.3: The full 168 cm KTeV regenerator is depicted on top. The final module
is expanded below.

Figure 2.3 shows the geometry. The resulting combination is a total of 1.83 inter-

action lengths.

Kaons emerging from the regenerator can be categorized by their scattering

as either coherently, diffractively or inelastically regenerated (although these will be

subdivided later in this thesis). Inelastically regenerated kaons scatter off individual

nuclei, often resulting in a small hadronic shower. Inelastic events are by far the

most numerous. By instrumenting the regenerator, the hadronic showers can be

detected and most of the inelastic scatters vetoed (along with internal and upstream

decays). Coherently regenerated kaons are the purely forward scattered source that

this analysis is interested in. Their production is ∼100 times smaller than the

inelastic events. Diffractively regenerated kaons have scattered off of one or more

atomic nuclei without causing their disintegration. They are outnumbered by the

coherently regenerated kaons by ∼5:1 but do not trigger the regenerator veto.
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The Spectrometer
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Figure 2.4: Drift Chamber Cell Geometry

The observable decay products from a Ke3 decay are the pion and the electron.

These must be reconstructed as precisely as possible. The drift chambers depicted

in Figure 2.2 are responsible for this task. Each of the four chambers has two layers

of sense wires, spaced by 12.7 mm, offset by 6.35 mm, aligned with the x-axis and

two similar layers of sense wires aligned with the y-axis. Each sense wire sits in the

center of a hexagonal cell of field wires (see Figure 2.4) which are held at high voltage

(∼2450 V). As a relativistic charged particle traverses the chamber, it ionizes the

argon-ethane gas and the resulting electrons drift toward the sense wire at roughly

50 microns/ns. Very near the sense wire, the drifting electrons begin ionizing the gas

creating an avalanche that results in a detectable pulse on the sense wire. This pulse
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is then used to start a time delay counter (TDC) with 1/2 ns precision. The result

of arduous calibration efforts (described in Graham [7]) is that a hit pair localizes a

charged particle with ∼90 micron precision. The analysis magnet provides a uniform

momentum kick of ∼412MeV/c to the passing particles. By matching upstream and

downstream spectrometer tracks at the bend plane of the magnet, a full trajectory

is mapped out allowing the sign of the charge and magnitude of the momentum to

be reconstructed.

The Calorimeter

1.9 m

Figure 2.5: CsI Calorimeter Geometry

The calorimeter, as shown in Figure 2.5, is a stack of 3100 pure cesium iodide

crystals, 50 cm (27 radiation lengths) in depth, composing a 1.9 m square with two 15

cm square beam holes. The principal role of this detector is to precisely reconstruct

photons from neutral mode decays (K → nπ0). As a result, extreme measures
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have been taken to ensure that the crystal energy response is highly linear and

that the position of clusters formed by electromagnetic showers can be determined

with great precision. To accomplish this high level of performance, a number of

experimental tricks are used. Unfiltered, the scintillation light from pure undoped

CsI consists of about 80% photons from a fast (∼36 ns) decaying source, with the

remaining photons from a longer lived (∼1 µs) excited state of the material. By

applying a UV filter to selectively remove the long component (480 nm wavelength)

while retaining the short component (315 nm), the ratio is improved to 90%. This

reduces the pile-up effects, analogous to the screen streaks that high end LCD screen

makers warn you against. The light output is ∼20 photons per MeV of energy. Each

crystal is viewed by a photomultiplier tube. The trigger system uses the individual

dynode outputs as a fast identifier of events of interest. The anode outputs are

digitized by a custom digitizer with 16 bits of dynamic range positioned inches

from the phototube. Six samples are collected at 53 MHz capturing ∼96% of the

fast scintillation component. For calibration purposes a Nd:YAG laser, through a

system of optical fibers, could feed controlled light pulses to every crystal. The

thesis of V. Prasad [21] is the definitive source on the full calibration of both the

electronics and the response of the crystals themselves. The result is an array with

a resolution of σE/E ' 2%/
√
E ⊕ 0.4% for E measured in GeV.

For the purpose of the Ke3 measurement, the calorimeter is used to distinguish

pions from electrons by comparing the energy of the cluster that matches the down-

stream particle track to the measured momentum. Because the electron electromag-

netically showers in the calorimeter, it will deposit all of its energy. In contrast, the

pion will either leave only ionization energy or will begin a hadronic shower which is

not fully contained by the CsI crystals. Note that in rare cases the pion can charge

exchange and the resulting chain π± → π0 → 2γ → EM shower will result in deposit
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of all of the pion energy in the calorimeter. This leads to an event loss that will be

addressed later.

The Veto Systems

This analysis relies on the veto systems to fulfill three roles. First, they sharply

define the geometric apertures that govern the acceptance of the detector. Second,

they reduce the overall trigger rate to a manageable level. Third, they help to

eliminate backgrounds associated with events where particles escape the combined

fiducial volume of the CsI and chamber systems.

The system includes 9 detectors, Ring Counters (RC6-9), Spectrometer Antis

(SA1-4) and the CsI Anti, which surround the outer aperture of the detector spaced

from Z of 132 m through 184 m. Each is a sandwich of alternating lead and scintilla-

tor layers of 16 radiation lengths. Photons convert and shower in the lead depositing

energy in the scintillator, where phototubes measure the light output. Thresholds

on the light output are set such that even minimum ionizing pions and muons es-

caping the fiducial volume cause an event to be rejected. The Mask Anti (MA) is a

similar detector upstream of the regenerator. Behind the CsI is the Back Anti (BA),

another 10 radiation length veto counter that removes events in which particles are

lost down the beam hole. A large hodoscope behind an additional 4 m of steel

(Z = 192 m) is used to veto muons. To provide a sharp edge for the inner aper-

ture in neutral mode, the Collar Anti (CA) surrounds each beam hole immediately

in front of the calorimeter, eclipsing the inner 1.5 cm of the crystals. Although it

functions similarly to the other veto systems, its construction uses tungsten in place

of the lead to allow more precise machining of this critical aperture, as well as to fit

its 8.7 radiation lengths in as small a space as possible.
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2.2 Incomplete Reconstruction

While the detector described above is excellent at resolving all of the relevant kine-

matics of both the electron and the pion, the neutrino is lost. As a result two key

parameters in the Kπ2 analysis, kaon momentum (PK) and kaon transverse momen-

tum (PT ), are not available in this analysis. The “most probable momentum” (P̂K)

replaces PK in determining the proper time of an event in this analysis. The large

role that PT usually plays in removing decays of scattered kaons must be divided

among a number of kinematic variables sensitive to scattering in the regenerator.

2.2.1 Momentum Ambiguity

Figure 2.6: Kinematics of Impartial Reconstruction

What reconstruction can be done when there is missing momentum? Figure 2.6

shows a two body decay where one body is lost both in the lab frame and in the

rest frame. Star superscripts label the rest frame kinematic quantities.
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Begin with four-momentum conservation,

PK = POBS + Pν . (2.1)

Take the dot product with POBS and evaluate the left hand side in the center of

mass frame:

mK · E∗OBS = m2
OBS + Pν · POBS . (2.2)

Evaluating the last term by squaring Equation 2.1 yields

m2
K = m2

OBS +m2
ν + 2Pν · POBS . (2.3)

Rearranging terms results in an expression for E∗OBS:

E∗OBS =
m2

K −m2
ν +m2

OBS

2mk

. (2.4)

Now observe that p∗OBS‖
2 can be found using the Pythagorean theorem:

p∗OBS‖
2 + p2T = E∗OBS

2 −m2
OBS , whence (2.5)

argument ≡ p∗OBS‖
2 =

(m2
K −m2

OBS −m2
ν)

2 − 4m2
OBSm

2
ν

4m2
k

− p2T . (2.6)

This expression is often referred to as the argument since it appears inside a

square-root in many kinematic expressions. If all quantities are measured correctly,

the argument is constrained to be positive definite.

To find the momentum of the parent kaon we begin with the standard Lorentz
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boost equations:

E∗OBS = γEOBS − βγPOBS‖ (2.7)

P ∗OBS‖ = γPOBS‖ − βγEOBS . (2.8)

Multiplying Equation 2.7 by POBS‖/EOBS and subtracting Equation 2.8 results in

an expression for the boost factor:

βγ =
E∗OBSPOBS‖ − P ∗OBS‖EOBS

E2
OBS − P 2

OBS‖

. (2.9)

Using the relation E2
OBS − P 2

OBS‖ = m2
OBS + p2T , and explicitly emphasizing that

only the magnitude of P ∗OBS‖ is known, the result for the kaon momentum is:

pK = βγ ·mK = mK

(

E∗OBSPOBS‖ ± P ∗OBS‖EOBS

m2
OBS + p2T

)

. (2.10)

Interestingly, the relative probabilities of these two solutions are independent of

any detector acceptances or efficiencies. In the limit of perfect detector resolution,

they depend only on the relative magnitude of the parent momentum spectrum at

the two solutions and the relative magnitude of the matrix element squared for the

two solutions. Figure 2.7 shows these distributions and the reconstructed quantities

from a typical event. The ratio is easily computed, given our best understanding of

each of these functions:

RP =
Φ(PHI) ·M(PHI)

2

Φ(PLO) ·M(PLO)2
. (2.11)

P̂K is set equal to the low momentum solution when RP < 1 and the high solution

when RP > 1. Cases where our guess is incorrect will dilute the sample and affect
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the measured asymmetry. The exact method for accounting for this dilution will

be described in Chapter 6. The basic idea is to use a detailed simulation of the

detector acceptance to predict the distribution of true PK that occupy each (P̂K , Z)

bin. The average asymmetry weighted by the flux in each bin is then compared to

the measured asymmetry in that bin.
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Figure 2.7: a) The figure on the left shows the contours of the Ke3 matrix element.
Reconstruction of the visible decay products reduces the phase space to a small
allowable region around two points, one for the high momentum solution, one for the
low momentum solution. b) The figure on the right shows the predicted momentum
flux at the downstream edge of the regenerator. A typical pair of solutions are
shown.

2.2.2 Incoherent Background

The computations in the preceding section provide a way to mitigate the impact of

incomplete momentum reconstruction on computing the proper lifetime relevant to

the physics at hand. However, the incomplete kinematic reconstruction also hinders
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the removal of scattered events based on their large p2T . In this section we identify

5 kinematic variables that are sensitive to scattering, which we will use to reduce,

study and model scattered events. The mechanism by which the distribution of

these variables are factored into a final result will be described in Chapter 6.

The Variables p2
Te, p

2
Tπ and p

2
T

For a kaon at rest, simple kinematics limit the values of p2T that any of the final

state particles could have. Suppose that particle 1 is a decay product with angle θ

to the direction of flight in the rest frame. We compute the transverse momentum

as follows:

p2T1 = sin2(θ)

(

m2
K +m2

1 −m2
2

2mK

)2

−m2
1 , (2.12)

where m2 is the mass of the remaining decay products. This quantity will be maxi-

mized when θ = π/2 and m2 assumes its minimum. This minimum occurs when the

two particles in the recoil system are relatively at rest, resulting in a mass which is

their simple sum. Therefore, the absolute maximum is:

(pmax1T )2 =

(

m2
K +m2

1 − (ma +mb)
2

2mK

)2

−m2
1 . (2.13)

where a and b are used to label the particles in the recoil system. Table 2.1 shows

the resulting maxima. These values are quite large compared to the typical p2T

distributions of the scattered kaons which tend to fall off as e−C·p
2
T where C is of

order 1000000 (c/MeV)2 or larger. Each of these is measurable in the KTeV detector.

Although the neutrino is not seen, we can equate its transverse momentum to that

of the electron pion system.



34

Decay Product (pmaxT )2

e 52562 (MeV/c)2

π 52562 (MeV/c)2

ν 52497 (MeV/c)2

Table 2.1: Maximum Obtainable p2T Values

The ringnumber Variable

Scatters can also be identified in cases where the decay vertex is displaced from

the boundary of the kaon beam. In the analysis of K → π0π0 decays, the center

of energy of the event is formed at the calorimeter and compared to the extent of

the beam. We borrow the terminology ringnumber from this analysis [21]. In the

Ke3 case, a line is drawn from the target through the decay vertex to a point on

the face of the CsI. The area (in cm2) of the smallest square co-centered with the

regenerator beam and containing this point is given the name ringnumber. Since

our beams are nearly perfect squares and the halo is quite well controlled, there is

a steep decline in the distribution above a ringnumber of ∼100. This variable is

most effective at identifying scatters with low values of momentum and high values

of Z-vertex.

The argument Variable

The argument defined in Equation 2.6 is the final variable sensitive to incoherent

scattering we consider. This is a useful variable since mismeasurements can lead

to small negative values while large negative values occur exclusively when kaon

scattering falsifies the assumption that the line from the target to the vertex defines

the direction of the parent.
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Fitting Strategy

Measurements of these five different variables kick only a small fraction of decays

of scattered kaons into the unphysical region. Neverthless, these variables play a

very important role since the precise understanding of their behavior will be used to

correctly account for the remaining incoherent background. The fitting strategy is

twofold. First, float the parameters that relate to the normalization of the scattered

background in order to best fit the sidebands in these sensitive distibutions. Second,

trust the simulation to provide the correction for the inelastic background in the

final fit to the asymmetry. This will require an extra layer of complexity in the

fitting process; however, since the background is so large this added complexity is

the only route to confidence.

2.3 Acceptance Cancelation

The geometric acceptance of the KTeV detector for a single magnet polarity is

dramatically different for K+
e3 and K−e3. Models of the geometry are good but the

analysis relies on an additional trick to minimize its dependence on the Monte

Carlo simulation. Consider the ‘4-fold way’ in which event counts are proportional

to flux, acceptance, and a term from the underlying physics asymmetry. This can

be expressed as follows:

N↓± ∼ Φ↓A↓±
1± δ
2

, and

N↑± ∼ Φ↑A↑±
1± δ
2

. (2.14)
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where N is the number of events observed, Φ is the kaon flux, A is the detector

acceptance, δ is the charge asymmetry of the underlying physics, and the subscripts

indicate the magnet polarity for the sample (↑↓) and the lepton charge (±).

The central conjecture in the 4-fold way is that the acceptance in an ideal ex-

periment depends only on geometry. That is to say the events with left bending

electrons and the events with left bending positrons have identical acceptance:

A↑+ = A↓− ,

A↑− = A↓+ . (2.15)

In that ideal case, a carefully chosen ratio,

R2 =
N↓+ ·N↑+
N↓− ·N↑−

=

(

1 + δ

1− δ

)2

, (2.16)

allows the complete cancellation of detector acceptance.

In the real experiment four effects corrupt this cancellation:

1. The magnetic field is not reversed perfectly. This will result in an imperfect

cancellation of geometric effects due to the slightly different field for positive

and negative polarity of the magnet.

2. The positive and negative polarity data cannot be taken simultaneously. Drifts

in the calibration, beam, veto performance and detector resolution may impact

the two polarities differently.

3. The detector is not charge symmetric. Like all detectors, the KTeV detector

has a large preponderance of electrons over positrons. At the electron energies
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in question, the e+/e− difference between the cross-section with the detector

materials will slightly alter the efficiency of one charge relative to the other.

4. The detector is not isoscalar. Most critically, the CsI calorimeter is made

of more neutrons than protons. Therefore there will be a difference in the

efficiency of positive pions and negative pions.

All of these effects will be shown to be acceptably small.

2.4 Residual Charge Asymmetry

A number of effects unrelated to geometry will have an impact on the charge asym-

metry measured in the detector. The vacuum beam KL → πeν decays have none

of the complications associated with the regenerator and are an ideal sample for

characterizing these effects. KTeV has published ‘A Measurement of the KL Charge

Asymmetry’[22] based on exactly this sample which breaks down the residual de-

tector asymmetry. The corrections included are in Table 2.2. These contribute to a

final measurement using vacuum beam events of δL = 3322± 74 ppm.

Source of Bias Bias(ppm)
π± difference in CsI -156± 10
π± interaction in trigger scintillator 54± 10
π decay and punchthrough 34± 40
e± difference in CsI -19± 18
target/absorber KS −KL interference -12± 1
e+ annihilation in spectrometer 11± 1
δ-ray production -8.5± 4.3
π absorption in spectrometer 5.0± 3.2
inexact magnet polarity reversal -3.1± 1.6
final collimator and regenerator scatters -1.2± 2.3
Kπ3, Kµ3,Λpπ and Λβ backgrounds 0.5± 0.7
Total Correction -95.3± 46.5

Table 2.2: Asymmetry Biases in Vacuum Beam Analysis (KL)
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The biases in our regenerator measurement of δL are very similar to those in the

vacuum beam. The chief differences come from two sources. First, the Z distribution

of decays is different since the vacuum analysis uses events upstream of the regen-

erator edge. Second, slight changes to event selection criteria designed to squeeze

the momentum ambiguity and eliminate scattered events alter the pion momentum

spectrum. This stands out as the largest bias and since its bias is momentum de-

pendent, it will be critical to carefully recompute the bias in the regenerator sample.



CHAPTER 3

DATA COLLECTION

The KTeV data acquisition system is capable of writing ∼5 Mb/sec of data. With

a raw event averaging 8 Kb, the triggering system was designed to select events at

the rate of ∼2 kHz to write to tape. The structure of the primary beam results

in a ‘bucket’ of protons every 19 ns during the 20 seconds of active spill every

minute. Three levels of trigger logic are used to accomplish this herculean sorting

task. The first level trigger runs at 53 MHz and uses the prompt signals from the

veto systems and drift chambers, the CsI total energy, and the trigger hodoscopes.

After the level 1 selection, the trigger is interrupted while the second level processes

operate. These include the Hardware Cluster Counter (HCC) [23], which counts the

individual clusters of energy in the calorimeter, the y-track finder and ‘hit counting’.

A front-end dead time of ∼2 µs allows this hardware to complete its processing and

for the trigger logic to reach a decision. Events satisfying the level 2 requirement

incur an additional 10 µs dead time as the front-end crates move the information

about the detectors state into a centralized data buffer. The third level trigger pulls

events from this buffer and performs a full event reconstruction.

During typical running, the global trigger rate is approximately 40 kHz out of

level 1, 10 kHz out of level 2, and 2 kHz out of level 3 and onto tape. An overall

dead time of 33% is typical.

39
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3.1 Trigger Logic

3.1.1 Level 1 Trigger

For the regenerator Ke3 sample, the nominal charged mode trigger is required for all

events. This trigger combines inputs from the trigger hodoscope, the drift chambers,

and the veto systems.

At Z = 184 m the trigger hodoscope consists of two planes (V0 and V1) of 5

mm thick scintillator paddles, as depicted in Figure 3.1. Each plane has 14 cm

square holes in the beam region to allow the neutral beams to pass. The planes are

split vertically and the counters are offset horizontally, such that none of the long

vertical cracks align. The trigger logic counts hit paddles in each plane, requiring

hits to be consistent with two tracks but still allowing a single point inefficiency

(2V0 · V1 + V0 · 2V1). Additionally, triggered counters must have representatives from

both top and bottom, as well as east (-x) and west (+x). A central overlap region is

allowed to count as either east or west for this East-West-Up-Down logic (EWUD).

To further reduce the trigger rate, both views of the upstream chambers are

instrumented with logic that provides a fast signal for events which have hits. These

are referred to as the drift chamber “ORs” (DC-OR). Requiring that 3 of 4 upstream

views have DC-OR hits reduces the trigger rate by removing events with decay

vertices downstream of chamber 1.

In addition to the hodoscopes and DC-ORs, which signal the presence of good

events, requirements are made to eliminate triggers on events that are unacceptable.

Requiring the regenerator veto output level to be low eliminates events with hard

scatters, showers or decays in the regenerator. This includes the elimination of

a majority of the inelastic regeneration background. Activity in the photon veto

counters also causes the level 1 trigger to reject an event. Events with final state
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Figure 3.1: Trigger Counter Geometry

particles that escape detection by the drift chambers and calorimeter or that are

accompanied by large coincident accidental activity are removed by this requirement.

High energy muons, either directly from kaon decay or from subsequent pion decay,

will, with high probability, penetrate the steel filters downstream of the CsI and

cause the muon hodoscopes to register a hit. The level 1 logic removes events which

trigger this counter, eliminating most K → πµν (Kµ3) events.

3.1.2 Level 2 Trigger

The charged mode level 2 trigger relies on two hardware processors to make more

precise decisions about the geometry of hits in the drift chamber. The ‘hit counting’
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processor reads out the drift chambers and quickly assesses the number of in-time

hits. This number must be consistent (allowing for single wire inefficiency) with the

presence of at least two tracks in the spectrometer. These in-time hits are passed on

to the “Y-track finder” which applies a track shape filter to reject two-track events

inconsistent with a common upstream vertex.

3.1.3 Level 3 Trigger

In the Level 3 trigger, a full event reconstruction is done. Reconstructed events are

required to have two or more tracks, with at least one matched to a cluster, and a

reasonable vertex candidate on the regenerator side of the detector. In the vacuum

beam, events with a track with E/P > 0.9 are tagged as likely Ke3 decays and

prescaled by a factor of 7. In the regenerator beam, these events have been spared

the prescale in order to maximize the data sample for this analysis.

3.2 The 1997 Run

Data from KTeV’s 1997 run is used for this analysis. Between April 3 and July 13,

323 high quality data runs were collected (runs 9063 - 10259). The magnet polarity

was periodically flipped (∼ twice daily) to help cancel the geometric acceptance

bias in our detector. The distribution of events collected to tape by run and the

magnetic field polarity for each can be seen in Figure 3.2.

During the 1997 running period, 2.3 × 1017 protons were delivered to target.

There were 24×109 Level 1 triggers, 12×109 Level 2 triggers, and 5×108 regenerator

tags written to tape. On the order of 4 terabytes of regenerator Ke3 decays were

written to tape.
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The KTeV run, by REGKE3 on raw tapes, 1997
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Figure 3.2: Runs used in this analysis. The area of each rectangle is proportional
to the number of regenerator Ke3 events accepted in the final analysis. Shading
indicates the magnet polarity.



CHAPTER 4

DATA ANALYSIS

The aim of the final event selection process is to eliminate poorly reconstructed

events, eliminate events from non-Ke3 decays, and minimize events from decays of

scattered kaons. Additionally, the analysis addresses the momentum ambiguity due

to the missing neutrino. The level of care required for the treatment of scatters and

the momentum ambiguity is unique to this analysis. The irreducible background

from kaons that scatter in the regenerator is very large and must be known well.

Although regenerator scatters are treated carefully in the Kπ2 analysis, in that case

the parent p2T is fully reconstructed, resulting in an order of magnitude reduction in

the background. The momentum ambiguity has been addressed with varying degrees

of sophistication in KTeV measurements of the Ke3 form factor, the Ke3γ branching

ratio and form factor [24] and the KL asymmetry, δL [22]. However, these efforts,

conducted in the vacuum beam, did not simultaneously address a large background

issue. One final comment comparing this effort to others within KTeV - the number

of regenerator Ke3 decays written to tape, 500 million, was the second largest event

sample in KTeV by only a factor of 2. The larger vacuumKe3 set is one of the largest

fully reconstructed signal samples in the history of high energy particle physics. This

analysis must address three frontiers: regenerator scattering, statistical power, and

momentum ambiguity resolution.

This chapter describes the selection criteria and the generation of arrays for use

by the fitter.

44
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4.1 Analysis Cuts

Many cuts are applied to the recorded sample in order to leave a population of

events that have a high signal to background ratio and are easily modeled.

4.1.1 Event Quality Cuts

The tracking analysis matches upstream track segments to downstream track seg-

ments at the bend plane of the magnet. A χ2 parameter quantifies the quality of

the track matching. Similarly, the decay vertex is defined by the closest approach of

the upstream segments. A similar χ2 parameter quantifies the quality of the vertex

fit. Loose cuts on these reconstruction parameters guarantee well measured 2 track

events. Additionally, we require that the vertex be on the same side (east/west) of

the detector as the regenerator. Cuts on activity in the regenerator scintillator elim-

inate neutron interactions, kaon decays within the regenerator, and the majority of

inelastic kaon scatters. These cuts require that:

• Vertex χ2 < 100

• Offmag χ2 < 500

• XV TX has the same sign as XREG

• Regenerator Activity < 2 MIPs

• Regenerator Lead Module Activity < 0.7 MIPs

4.1.2 Particle ID Cuts

The standard KTeV analysis matches tracks in X with those in Y by pairing pro-

jected tracks with clusters in the calorimeter. Requiring tracks to be separated at
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the CsI guarantees that very few mis-matches remain in the final sample. Because

the electron shower is contained within the calorimeter, the ratio of its measured

energy and momentum is expected to be very near unity. Most of the time the pion

showers hadronically or not at all, depositing only a small fraction of its energy in

the calorimeter. Our cuts require a high value of E/P for the electron and a low

value of E/P for the pion to ensure clean particle identification. The result is a set

of good two track events with a high purity of Ke3 events. These cuts require that:

• Track X Separation at CsI > 3 cm

• Track Y Separation at CsI > 3 cm

• Track R Separation at CsI > 5 cm

• E/P for π < 0.85

• E/P for electron > 0.94

4.1.3 Fiducial Cuts

To measure direct CP violation, the acceptance for Kπ2 events must be understood

extremely well. The crucible of the <(ε′/ε) analysis forged a set of fiducial cuts

which guarantee that only events for which the detector acceptance is well modeled

survive. Although modeling the acceptance is not as critical to this analysis, the

same fiducial cuts are used to select well measured events with efficient particle

identification. These cuts require that:

• Distance from CA edge > 2 mm

• Track is inside DC outer edge

• Distance from CsI outer edge > 2.9 cm
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• Distance from V V ′ hole edge > 1 mm

• Wire centered cell separation > 2 cells

4.1.4 Non Ke3 Background Cuts

The largest remaining background not due to real Ke3 decays are the decays of

coherently regenerated kaons to π+π−π0. A kinematic cut on the longitudinal mo-

mentum of the π0 (so called Pπ0KIN [9]) is very effective in removing these events.

A small number of scattered kaons that decay to π+π−π0 can survive this cut. Cut-

ting on extra clusters in the event greatly reduces this background in addition to

eliminating many radiative Ke3 decays. Regenerator Kπ2 decays are eliminated by

assuming both particles are pions and removing events with reconstructed mass

near the kaon mass. Kµ3 decays with both particles misidentified are reduced by

requiring potential µ tracks to have sufficient momentum to penetrate the µ-filter

and fire the veto. These cuts require that:

• If Mππ < 0.400 GeV, then Pπ0KIN < 0.0 GeV

• No extra clusters (> 20 cm from track at the CsI and E > 1.5 GeV to qualify)

• 0.4926 GeV < Mππ < 0.5026 GeV

• Track momentum > 8 GeV

• Track momentum < 200 GeV

4.1.5 Scattered Ke3 Background Cuts

The scatters of kaons in the regenerator are very difficult to remove since they have

identical final state particles and the rejection power of the P 2
T , so great in the fully
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reconstructed modes (π+π−, π+π−π0), is severely handicapped by the neutrino’s

unmeasured trajectory. A number of kinematic cuts serve to decrease the number

of scattered events in our samples. Requiring that the vertex remains in the beam

region removes scatters that escape the profile of the well collimated kaon beams.

For coherent events, the kinematic maximum for the transverse momentum of each

track, and for the 2 track system is ∼0.054 (GeV/c)2 (∼M2
K
−M2

π

2MK
). Removing events

that exceed this limit preferentially rejects scattered events. The most powerful

discriminant is the argument, p∗OBS‖
2, defined in Equation 2.6. Imperfect resolu-

tion contributes a small, non-physical tail to the negative side of the argument

distribution, however for scattered events this tail is much larger. Requiring the

argument to be greater than −0.002 (GeV/c)2 reduces the scattered background

by ∼40%. These cuts require that:

• ringnumber < 110 cm2

• P 2
T < 0.054

(

GeV
c

)2

• P 2
T π± < 0.054

(

GeV
c

)2

• P 2
T e± < 0.054

(

GeV
c

)2

• argument > −0.002
(

GeV
c

)2

4.2 Input to the Fitter

After applying all of the cuts, 125,425,011 signal events remain. For each combina-

tion of magnet polarity, lepton sign, and regenerator position, a histogram is made

of the (P̂ ,Z) distibution, with 1 GeV steps from 0 to 200 GeV and 40 cm steps from

110 m to 160 m. These 8 histograms serve as the inputs to the asymmetry calcula-

tion. When analyzing the simulated data, the same histograms are made; however,
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Source Sample Histogram Variables

Data Signal (P̂ ,Z)
Signal MC Sideband
Background MC

Data Sideband (P 2
T ,P̂ )

Signal MC (ringnumber,P̂ )

Background MC (argument,P̂ )

(P 2
Te,P̂ )

(P 2
Tπ,P̂ )

Signal MC Signal (P̂ ,P ,Z)
Background MC

Table 4.1: Final Arrays Generated for the Asymmetry Fitter.

an additional set of arrays are generated, recording the distibution of (P ,P̂ ,Z) in

coarser 5 GeV by 2 m steps. For a background free sample this information would be

sufficient for the fitter. However, to address the large background a sideband sam-

ple is defined. Any event which passes all of the analysis cuts not associated with

the scattered background (Sections 4.1.1-4.1.4), but fails at least 1 of the scattered

background cuts, is assigned to the sideband sample. For this sample, 5 additional

histograms are formed, 1 for each of the background sensitive variables. Table 4.1

summarizes the analysis output histograms.



CHAPTER 5

THE MONTE CARLO SIMULATION

Section 2.2 described the need for a detailed detector simulation to fulfill two roles.

First, it must predict the distribution of proper times observed so that the fitter can

accurately extract the parameters of interest from the observed asymmetry. Second,

it must predict the distribution of the incoherent decays sufficiently to allow their

correct treatment in the fitting process.

To accomplish these tasks the standard KTeV Monte Carlo (MC) simulation has

been modified to include a detailed model of incoherent scatters in the regenerator.

Section 5.1 will give an overview of the KTeV simulation methodology as imple-

mented in the MC. Section 5.2 follows with a plethora of Data/MC comparisons to

demonstrate the strengths and weaknesses of our model. Section 5.3 describes this

model of the regenerator and shows the critical data/MC comparisons. Finally, Sec-

tion 5.4 discusses a quick method for quantifying the impact of non-Ke3 backgrounds

in our sample.

5.1 The Monte Carlo Simulation

The KTeV Monte Carlo simulation is about 100,000 lines of FORTRAN code devel-

oped by a truly collaborative effort over many years. The simulation can be broken

into parts: kaon production, kaon evolution, kaon decay, decay product evolution,

50
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individual detector response, accidental activity, and trigger response. Each of these

steps plays a role in correctly predicting the overall detector acceptance.

The momentum spectrum of kaon production is tuned to agree with the spectrum

observed in the K → π+π−data. The parameterization of the ratio of K0 and K0 is

based on the production model of Malensek [25]. Simulation of the kaon evolution

properly computes the amplitude of evolution as the kaon traverses the absorbers

and regenerator. Upstream collimators are treated as perfectly absorbing. Kaon

scattering is modeled in the downstream collimators, absorbers and regenerator.

The kinematics of theKe3 decays generated for this analysis include the full radiative

treatment, including Ke3γ decays.

The decay products are traced through the detector. Multiple scattering, elec-

tron Bremsstrahlung, photon pair production, and pion decay are all modeled: any

secondary particles are traced through the detector as well. The appropriate mo-

mentum kick is applied at the bend plane of the magnet.

The simulation of the drift chambers must convert the position of the passing

particle into hit-times on the relevant wires. J. Graham’s thesis [7] describes this in

detail. The simulation takes place at a low enough level to address four effects that

result in inefficiencies or degradation in resolution of the detector.

1. In a small fraction of cases (∼ 1%), the pulse from the wire never crosses

above threshold and the Time Delay Counter (TDC) doesn’t register a hit.

This “wire inefficiency” is addressed by including a detailed wire by wire map

of the measured inefficiency. This is coupled with an overall cell position

dependence to model the effect.

2. In a fraction of cases, the sum of distances (SOD) from adjacent wires is

observed to be more than 1 mm greater than the cell size, resulting in poorer
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resolution. This effect is more prominent in the central chamber region exposed

to the neutral beams. The simulation addresses this problem by modeling the

arrival time of individual drift electrons and computing a simulated pulse

shape. The localized wire damage that causes the “high-SOD” problem is

then modeled by adjusting the gain of the final cascade to the wire. Thus the

effective threshold for triggering the TDCs is adjusted to be consistent with

the observed high-SOD rates.

3. Accidentals can result in both “low-SOD” hit pairs when they trigger the TDC

before the actual particle passes, and hit losses when they trigger the TDC

just prior to the event start time, causing the true pulse be missed due to

the discriminator dead-time. Two causes of the discriminator dead-time are

modeled: 42 ns after an early accidental is the minimum re-triggering time

and hits that should be in this window are missed. Long accidental pulses can

cause the re-triggering time to be extended. The distribution of these pulse

lengths are tuned in the MC to match the data.

4. Delta rays from the interaction of the charged particle with the chamber win-

dow or gas can generate low-SOD events as well. These are included in the

MC and then tuned to match the 0.5% level observed in the data.

The simulation of the amount of energy deposited in the calorimeter is described

in detail in the thesis of V. Prasad [21]. The simulation is driven by a core library of

showers (for both electrons and pions) generated by GEANT. For electrons and pho-

tons, the showers cover a 13×13 small block region (extended via a parametrization

to 27× 27) and are generated in 6 logarithmic energy bins. For pions the coverage

must be more extensive, covering a 50 × 50 array, due to the less uniform nature

of hadronic showers. Care is taken to match the observed impact of location de-



53

pendence within the crystals, leakage across the beam-holes, photo-statistics and

calibration of the ADC response.

The simulation also includes the trigger hodoscopes. Details of their geometry

have been very carefully mapped out and the resulting 0.3% inefficiency is very well

understood. The full Level 1, Level 2, and Level 3 triggers are simulated and the

final output of the MC is saved in a format that is completely compatible with the

standard KTeV data.

5.2 Monte Carlo Comparisons to Data

For the purposes of generating the migration matrix, 1,127,811 coherent regenerator

Ke3 decays were generated that pass all of the analysis cuts. An additional 142,587

incoherent events were generated separately and also pass all analysis cuts. These

represent only∼1% of the data sample but provide an adequate statistical sample for

the purposes of this analysis. These coherent and incoherent samples are combined

in a weighted fashion based on the parameters in the background fit discussed in

Chapter 6, to allow the comparisons with the data which follow.

5.2.1 Quality Variables

Figure 5.1 shows the data/MC overlays for the track quality variables. Note the

logarithmic scale and the quite loose cuts in these variables. The regenerator veto

cut is the most restrictive, removing 6.5% of otherwise acceptable events. The MC

predicts only a 5.8% loss, suggesting an incomplete accounting of Ke3 events which

accompany energy deposit in the regenerator. The systematic effect of this mismatch

is investigated further in Section 7.3.1.
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Figure 5.1: Overlay of Data on Monte Carlo of the Quality Variables. Although
the agreement on the tails of the χ2 distributions is poor, this represents very few
events. Arrows indicate the events removed by the standard analysis cuts.
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Figure 5.2: Overlay of Data on Monte Carlo for E/P. Arrows indicate the events
removed by the standard analysis cuts.

5.2.2 PID Variables

Simulation of the CsI response for the pions and electrons is quite difficult but not

extremely critical to this analysis. Figure 5.2 shows the level of success in this

endeavor. A small background can be seen in the electron E/P plot. The level of

this background (found by fitting a second order polynomial to the sidebands in

Figure 5.2) is 3× 10−4. This level is consistent with KL scatters in the regenerator

which subsequently decay to charged Kπ3 (K → π+π−π0) and have a pion that

passes the electron ID cuts. Section 5.4.1 will show that this has negligible impact

on our fits.

Track separation cuts are required in order to guarantee proper track-cluster

matching for the E/P measurements. The acceptance of the detector is sensitive
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Figure 5.3: Overlay of Data on Monte Carlo for for Track Separation Variables.
Plots on the left are the expanded version of the leftmost bin of the plots on the
right. Arrows indicate the events removed by the standard analysis cuts.

to these cuts. Figure 5.3 shows good agreement between the data and MC for the

track isolation variables.



57

5.2.3 Fiducial Variables

The cuts which define the geometric aperture for the decay products play a key

role in defining the acceptance. Careful study of the electron illuminations near

the edges of the CA and the trigger beamholes give very precise knowledge of their

location. Figure 5.4 shows the agreement of the fiducial variables. The simulation

matches the data very well.

Figure 5.5 shows typical chamber illumination overlays; the discrepancies be-

tween data and MC are too small to see on the linear scale. Figure 5.6 shows a

typical Data/MC ratio for a pair of these illumination plots. This level of agree-

ment is typical across the volume of the detector.

For the purposes of this analysis, the most probable solution as described in

Section 2.2.1 is selected, and the corresponding momentum, P̂K , is used as the

observable for the histograms critical to the fitter.

The prediction of the most probable solution does not perform as well for Ke3γ

or scattered Ke3 decays. The Monte Carlo simulation predicts the migration of

the data due to this selection so that the fitter can predict the asymmetry in the

observed quantities based on the predicted value in the undistorted quantities. There

is no systematic impact on the fit from this momentum picking procedure due to

mis-measurement of the matrix element or the flux since they apply the same way

to the data and the Monte Carlo. A sub-optimal choice of selection functions will

reduce the statistical power. Bias may arise in the asymmetry prediction of the

fitter in a way that would be flagged by a failure of the Monte Carlo to match the

critical kinematic distributions: Mπe, P
2
T , argument, and P 2

Tπ.

Figure 5.7 shows the dilution effect, as well as the ability of our simulation to

predict the distribution of log(RP ). This procedure results in the correct selection
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Figure 5.4: Overlay of Data on Monte Carlo for the Fiducial Variables.

65% of the time. There is a statistically significant bias observable as a step in the

data/MC ratio. This has the same impact as a mismeasurement of the kaon flux on

our fit. Section 7.2.6 addresses this bias.
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Figure 5.5: Overlay of Data on Monte Carlo for the Illumination. The west beam
only is shown in these plots.
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Figure 5.6: Overlay of Data on Monte Carlo for the Illumination at the Magnet
Bend Plane. The west beam only is shown in these plots.



61

1

10

10 2

10 3

10 4

10 5

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

(PMC - P
∧

K)/PMC

Fractional Momentum Error

E
ve

nt
s 

pe
r 

0.
01

Probability Ratio Distribution

10 5

10 6

10 7

-2 -1 0 1 2
log10( ΦHIMHI

2 / ΦLOMLO
2 )

E
ve

nt
s 

pe
r 

0.
1

Probability Ratio Distribution

0.95

0.96

0.97

0.98

0.99

1

1.01

1.02

1.03

1.04

1.05

-2 -1 0 1 2
log10( ΦHIMHI

2 / ΦLOMLO
2 )

D
at

a/
M

C
 R

at
io

Figure 5.7: a) Error on measured momentum as measured by the Monte Carlo
(MC). The width of the peak is the resolution; the ‘background’ is dilution effect
of choosing the wrong solution. 65% of reconstructed MC events are within 10%
of the correct momentum solution b,c) Data/MC overlay of the ratio of Hi to Lo
momentum weights.



62

5.3 Simulation of Regenerator Scatters

A simplistic but effective model of diffractive scatters results in the conclusion that

the regeneration amplitude for a kaon that undergoes a single elastic nuclear scatter

can be written in terms of the coherent regeneration and the length of the regenerator

(see Appendix F of [9]):

|Ψdiff〉 ∼ |KL〉+ ρeff |KS〉

ρeff = −
(

2− x
x

)

ρcoh , (5.1)

where x is the number of interaction lengths in the regenerator.

Kaons that scatter in the regenerator are the dominant background in the neutral

mode analysis of <(ε′/ε). Consequently, the length of the KTeV regenerator has been

optimized to minimize this contaminant. Minimizing ρeff reduces the background

for KS decays but also has an excellent side-effect for the Ke3 asymmetry analysis.

The phase of the scattered component is almost exactly opposite to that of the

coherent component. In the limit that this phase reversal is exact and the coherent

and scattered acceptances are the same, the magnitude of the asymmetry is reduced

but the phase remains unchanged. Thus, at first order, the impact of this background

on the phase measurement is zero.

Subtleties like the real part of the nuclear scattering amplitude, decays in the

regenerator, multiple scattering, and inelastic regeneration hamper this cancellation.

Also simply ignoring the background and allowing the amplitude to float would

reduce the statistical power of the fit. Instead, the fitter accounts for incoherent

backgrounds by introducing the effective regeneration amplitude, ρeff , for each of

the scattered components. Each component’s migration, momentum spectrum, and
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Source
∣

∣

∣

ρeff
ρcoh

∣

∣

∣ φeff − φcoh(◦)
Coherent 1.0000 0.00
Single C 0.1393 165.50
Single Pb 0.2300 60.20
Double Scatter 1.2200 172.18
Multiple Scatter 2.3900 175.22
Inelastic Scatter ∞ 0.00

Table 5.1: Regenerator Scattering Parameters. An effective ρ of ∞ is shorthand for
pure KS.

kinematics are derived from a modified version of the KTeV Monte Carlo. The

modified MC assumes a Regge parameterization of the K−p and K−n amplitudes,

integrating these into the carbon and lead nuclear amplitudes using a model that

includes both elastic and inelastic screening, and then propagating the kaon state

through the regenerator using a full multiple scattering Monte Carlo. The resulting

events are tagged by class. Events are tagged as single scatters (carbon and lead

considered separately), double scatters (carbon and lead together), inelastic scatters

and a catch all multiple scatter (> 2) category. In addition to providing a sample

of events the MC computes an effective regeneration amplitude and phase for each

component. Table 5.1 shows the values of ρeff , compared to ρcoh, for each of the

scatter types considered. The time dependence of inelastic scatters, typically hard

scatters off hydrogen or individual nucleons not vetoed by the regenerator, has been

studied with Kπ2 decays and has been found to be very close to that of pure KS.

Table 5.2 summarizes the background level that remains in the signal region.

Using a crude approach to limiting the bias for these background levels is inadequate.

Instead, these backgrounds are folded into the fitter where more exhaustive study

of their impact is possible.

The most critical test for the regenerator scatter simulation is getting the back-
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Source Events (106) Bkgd.

Data 138.549 .
Elastics 14.219 9.74 %

1 C 11.358 8.20 %
1 Pb 1.814 1.31 %
2 Scat. 0.994 0.72 %
>2 Scat. 0.053 0.04 %

Inelastics 1.230 0.89 %

Total 15.450 11.15 %

Table 5.2: Regenerator Scatter Statistics in the Signal Region.

ground prediction correct. After normalizing the background components in the

sideband of the background variables, Figure 5.8 shows the data/MC overlay of the

P 2
T and ringnumber distributions. There is a clear deficit in the simulation at a

ringnumber of 90 to 100 that the systematic error must address. Figure 5.9 shows

similar overlays for the argument, P 2
Te and P 2

Tπ distributions. The argument

distribution of the signal near 0 is very sensitive to resolution effects. Since the cut

is at a value of −0.002(GeV/c)2, this can result in a large systematic error. For

large values of the argument the disagreement is due to the same scattered Kπ3

events that affect the electron E/P agreement.

5.4 Non-Ke3 Backgrounds

To quantify the importance of a given background, it is useful to consider its impact

on the charge asymmetry. Consider a signal with N0 events and an asymmetry of

δ0. Equation 5.2 shows the observed asymmetry after the addition of a background

with N1 events and an asymmetry of δ1. The error introduced by the contamination

is linear in both the size of the background and the difference between signal and
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background asymmetries [26]:

δobs = δ0 + (δ1 − δ0)
N1

N0

. (5.2)

The relevant metric for this analysis is complicated by the fact that both the

absolute level and the proper time dependence of this dilution affect the fit values.

For small backgrounds, a naive fit of the data is done by plotting the asymmetry

versus τ ′, the most probable proper time. This histogram is then fit to a function

with the form of Equation 1.35. Floating ∆m, ΓS, φρ, |ρ| and δL results in a

good qualitative fit to the data. Clearly the values found will not be accurate; the

migration is not included, the momentum dependence of ρ is ignored, etc.. However,

by applying the correction of Equation 5.2 and refitting with only φρ and δL floating,

the impact on φρ of a background with known δ1(τ) and N1(τ) can be estimated.

5.4.1 K → π+π−π0

The quality of the calorimeter provides extremely good rejection of events without

a real electron in the final state. However, in rare cases a photon (or photons)

from π0 decay will deposit sufficient energy in a π± cluster to cause the track to be

misidentified as an electron.

Table 5.3 shows that the low level of the 3 body decay that remains in the

sample is largely removed by a simple kinematic cut (the cut against extra clusters

has already been applied). This level has been estimated by normalizing a Kπ3

Monte Carlo with no cut on electron E/P in the region removed by the Pπ0KIN

cut. Figure 5.10 shows the region removed by our background cut as well as the

normalized Kπ3 background projected onto the Pπ0KIN axis and the background

that remains. The resulting phase bias is 0.036(11)◦.
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Initial Background 0.30 %
Coherent Ke3 MC Loss 1.70 %
Scattered Ke3 MC Loss 3.38 %
Data Loss 2.17 %
Background Rejection 86.%
Remaining Background 0.05 %

Table 5.3: K → π+π−π0 Background Rejection.

5.4.2 K → π±µ∓ν

In order for a Kµ3 decay to pass the final cuts, one track must fake an electron and

the muon must fail to fire the veto counters. This happens most frequently when a

low momentum muon ranges out in the filter steel while an accidental track satisfies

the electron requirements.

The KTeV Monte Carlo with accidental events overlayed predicts a Kµ3 back-

ground acceptance of (2.0 ± 1.4) × 10−6. Comparing this to a Ke3 acceptance of

8.36% and using

BR(Kµ3)

BR(Ke3)
= 70.1% (5.3)

produces a prediction of the relative background level of

N1

N0

= (17± 12)× 10−6 . (5.4)

The time dependence of this is similar to that of Ke3 decays. Deviations due to

the misreconstructed momentum, which change the time dependence, have been

considered and are small. Even allowing the worst case for the asymmetry of the

background, namely 90◦ out of phase with the signal, only biases the phase by 0.03◦.
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5.4.3 K → π+π−

Although Table 5.4 shows that the Kπ2 background is quite small, there is no reason

not to remove a background that is so cleanly isolated. Figure 5.11 shows the clear

enhancement in the 2π invariant mass distribution in the region of the kaon mass.

Failure to make this cut biases the phase by −0.09◦ ± 0.03◦.

Initial Background 0.16 %
Coherent Ke3 MC Loss 2.87 %
Scattered Ke3 MC Loss 1.96 %
Data Loss 2.96 %
Background Rejection ∼100.00 %
Remaining Background 0.00 %

Table 5.4: K → π+π− Background Rejection.



CHAPTER 6

FITTING

This chapter provides a detailed account of the fitting strategy. A discussion of

fitting gives needed perspective on the systematic impact of the various effects an-

alyzed in Chapter 7.

6.1 Fitting

The function of the fitter is to take a set of inputs, which include the physics

parameters of interest and a set of parameters that describe the background, and

to generate a prediction of the asymmetry that can be quantitatively compared to

the data. The presence of a large irreducible background from regenerator scatters,

and the effects of the dilution of the momentum spectrum by the ambiguity due

to the unmeasured neutrino, must be included in the predictions. I consider first

the technique for fitting the coherent part. Modifications needed to address the

scattered background will follow, along with the exact parameterization used for the

background and the method for extracting the value of the background parameters

from the data.

71
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6.1.1 Fitting the Coherent Asymmetry

The Physics

The principal physics parameters included in the analyticity fit are:

φf−f̄
∣

∣

∣

PK=70 GeV
,

∣

∣

∣

∣

∣

f − f̄
k

∣

∣

∣

∣

∣

k = 70 GeV
, α, ∆m, ΓS, and δL.

The first three of these are combined with our best understanding of nuclear

screening effects to produce |f−(PK)| and φf−(PK). Together with ∆m, ΓS and

measurements of the regenerative behavior of minority components of the KTeV

regenerator (hydrogen and lead), these parameters are used to propagate the kaon

state from the target to the downstream end of the regenerator resulting in a predic-

tion for ρ. The rate for each lepton charge state is then determined by integrating

Equation 1.23 over each Z bin for a fixed value of P . Combining the results for the

two charged states yields a predicted asymmetry in each bin, δ(P,Z).

For φρ measurements the ∆S = ∆Q violating parameter, x, is fixed to zero. To

measure <(x) it is then floated in a separate set of fits where φρ is fixed to the value

predicted by analyticity.

The Migration

The undetected neutrino results in an imperfect reconstruction of the parent kaon

momentum. To address this issue the analysis computes an observable, the “most

probable momentum” or P̂K as defined in Section 2.2.1 (henceforth P̂ ). In order to

produce a prediction of the asymmetry in a given bin of the observables, (P̂ , Z), we

compute the appropriately weighted average of the theoretical asymmetry for the

mix of real momenta, P , present in each P̂ bin as predicted by the MC.
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Written in discrete form, the predicted asymmetry in a bin is:

δ(P̂j;Zk) =

imax
∑

i=imin

M(Pi, P̂j;Zk)δ(Pi;Zk)

imax
∑

i=imin

M(Pi, P̂j;Zk)

. (6.1)

The M in Equation 6.1 is the MC generated migration matrix. This 3-dimen-

sional array parameterizes the small effect of momentum resolution and the large

smearing in the process of computing P̂ from the observed particle’s trajectories and

momenta. Note that resolution effects in the momentum measurement are effectively

included in this migration matrix but resolution in Z is not. Systematic effects of

Z resolution will be shown to be small.

Acceptance Cancellation

Our data are the numbers of accepted events, Ni(P̂j;Zk), in each of 8 subsamples,

i. These subsamples will be labeled by subscripts in the succeeding to indicate the

magnet polarity, ↑ / ↓; the charge of the lepton, +/−; and the regenerator position,

E/W , i.e., i ∈ {↑ +E, ↑ −E, ↓ +E, ↓ −E, ↑ +W, ↑ −W, ↓ +W, ↓ −W}.

In order to compare δ(P̂j;Zk) to the events measured in our data, we will lean

heavily on the acceptance cancelation described in Section 2.3. The asymmetries

due to the geometry effects in our detector are removed to first order by alternating

the polarity of the magnetic field. In that ideal case, the ratio of Equation 2.16

allows the complete cancellation of detector acceptance.

To numerically address the non canceling parts of the acceptance I define the

real world acceptance, A:

A↓+ = G← · (1 + ∆G←) · εe← · (1 + ∆εe←) · επ← · (1 + ∆επ←) ,
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A↓− = G→ · (1−∆G→) · εe→ · (1−∆εe→) · επ→ · (1−∆επ→) ,

A↑+ = G→ · (1 + ∆G→) · εe→ · (1 + ∆εe→) · επ→ · (1 + ∆επ→) , and

A↑− = G← · (1−∆G←) · εe← · (1−∆εe←) · επ← · (1−∆επ←) . (6.2)

The newly introduced variables are G, the canceling part of the geometric and time

dependent acceptance; ∆G, the part that does not cancel; εe/π, the canceling part of

the electron/pion efficiencies and ∆εe/π, the non-canceling part of the electron/pion

efficiencies. Equation 6.3 shows the more realistic result for R2 in the good approx-

imation that these ∆’s are significantly less than 1:

R2 =

(

1 + δ′

1− δ′
)2

(6.3)

δ′ = δ +
1

2
(∆G→ +∆G← +∆εe→ +∆εe← +∆επ→ +∆επ←) . (6.4)

The problem of quantifying the ∆’s remains and will be discussed as part of the

systematic error. For now, however, I will neglect these small corrections and focus

on how best to compare the predicted asymmetry to that observed in the data.

The Likelihood

In order to compare the predicted asymmetry to the data collected in each bin, a

likelihood is computed for the agreement of the data with the model represented by:

N↓− = N · F ·R ·D ,

N↑− = N · A ·R ·D ,

N↓+ = N · F · A ·D , and

N↑+ = N ·D . (6.5)
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A comparison to Equation 2.14 shows that the new parameters have the following

definitions:

R =
1− δ
1 + δ

,

D =
1 + δ

4
,

F =
Φ↓
Φ↑

, and

A =
A→
A←

. (6.6)

For each beam and (P̂ , Z) bin there are four data points, (N↑+,N↓+,N↑− and N↓−)

and only three free variables (N , F and A). The negative log(Likelihood) can be

written down and minimized,

− log(L) = NΣ log(ND) +N↓ log(F ) +

N→ log(A) +N− log(R)−N . (6.7)

Equation 6.7 introduces new variables to represent various data combinations:

NΣ = N↓− +N↑− +N↓+ +N↑+

N↓ = N↓− +N↓+ ,

N→ = N↑− +N↓+ , (6.8)

N← = N↑+ +N↓− , and

N− = N↓− +N↑− .

The strategy used by the fitter is to maximize the likelihood by allowing F , N

and A to float in each bin, and δ (thus the derived R and D) to be predicted by the
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physical model. This is quite straight forward. The maximum possible logL occurs

for the values in Equations 6.9:

N0 = NΣ ,

D0 =
N↑+
NΣ

,

F0 =

√

N↓− ·N↓+
N↑− ·N↑+

, (6.9)

A0 =

√

N↓+ ·N↑−
N↓− ·N↑+

, and

R0 =

√

N↓− ·N↑−
N↓+ ·N↑+

.

When compared to the actual logL for the fit, with R and D derived from the

prediction, this can be converted to a χ2 in the conventional way,

χ2 = 2 · (logLMAX − logLPRE) . (6.10)

The total χ2 is the sum of this statistic over each bin in Z and P̂ . The parameters

of the fit are varied in order to minimize this value. The likelihood method does not

give different results from a simple χ2 calculation. However, systematic checks in

which the flux ratio, F , is fixed within each beam are robustly defined by a simple

extension of this procedure. Although it is not relevant for this analysis, this method

is also insensitive to potential biases which result from low statistics bins.

6.1.2 Including the Background

Unfortunately there is a large irreducible background of kaons that scatter in the re-

generator. Subtracting background from the data before the arrays are passed to the

fitter would necessitate the generation of large MC samples and place at a premium
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the simulation’s modeling of the detector asymmetry. Instead the background is in-

cluded in the fitting procedure. MC for each background source produces migration

arrays analogous to the coherent arrays. An expression similar to Equation 6.1 is

formed for each source, and the average of these, weighted by the number of events

from each source is used for the prediction.

δ(P̂j;Zk) =

NS
∑

m=1

δm(P̂j;Zk)Nm(P̂j;Zk)

NS
∑

m=1

Nm(P̂j;Zk)

, (6.11)

δm(P̂j;Zk) =

imax
∑

i=imin

Mm(Pi, P̂j;Zk)δm(Pi;Zk)

imax
∑

i=imin

Mm(Pi, P̂j;Zk)

. (6.12)

The scattered background has been separated into five sources: single scatters

off of carbon, single scatters off of lead, double scatters, multiple (> 2) scatters, and

inelastic scatters. These are all added together with the coherent piece to generate

the final prediction.

Each δm(Pi;Zk) is computed using effective values for ρm and αm taken from

a detailed model of scattering in the regenerator (Section 5.3). The Nm arrays

are taken from a MC which is scaled to correctly predict the sidebands in the P 2
T ,

argument and ringnumber distributions as described in Section 6.1.3.

6.1.3 Fitting the Background

In order to normalize the scattered background to the regenerator Ke3 data, five

distributions are considered: Signal (P̂ , Z), Sideband P̂ , Sideband P 2
T , Sideband
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argument, and Sideband ringnumber. Detailed descriptions of these variables

are provided in the description of the analysis (Section 2.2.2).

The fitter allows a scale and a slope in observed momentum to modify the scat-

tered background predicted by the MC. To make a prediction of the overall back-

ground, the fitter scales the scattered MC as defined in Equations 6.13 and 6.14.

The new parameters added include an overall normalization to the total flux in each

beam, NE/W ; a separate normalization for elastic and inelastic scatters, Nela/ine; a

momentum slope for the coherent MC, mcoh; and a momentum slope for the scat-

tered background, mscat. Note that the P̂ slopes are introduced in such a way that

they transform not only the distributions manifestly dependent on P̂ , the first two,

but also the other distributions as well.

NFit(P̂ ) = NE/W · (1 +mcoh(P̂ − 61.3)) ·
(

MCcoh(P̂ ) +

(NelaMCela(P̂ ) +

NineMCine(P̂ ) ) ·

(1 +mscat(P̂ − 61.3) )
)

(6.13)

NFit(X) = NE/W ·
j
∑

i

{

(1 +mcoh(P
′
i − 61.3)) ·

(

MCcoh(P̂ , X) +

(1 +mscat(P̂ − 61.3)) ·

(NelaMCela(P̂ , X) +

NineMCine(P̂ , X) )
) }

(6.14)

These parameters are allowed to float in the background fit. The fitter forms
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a χ2 by comparing resulting sideband distributions of P̂ , argument, P 2
T , and

ringnumber and the signal region (P̂ , Z) distribution with the same distributions

in the data. In addition, the P 2
T slopes for single carbon and inelastic scatters are

adjusted by reweighting events in the MC analysis. The resulting χ2 is minimized

with respect to these variables as well.

6.2 Fit Results

6.2.1 Background

Table 6.1 shows the values of the parameters in Equations 6.13 and 6.14 after a fit

to the background distributions. Figure 6.1 shows P̂ and Z overlays for the signal

region. Figures 6.2 and 6.3 show the fitter optimized sideband distributions.

Variable Value
NEAST 98.43±0.12
NWEST 99.07±0.12
mcoh × 104 GeV -2.43±0.23
Cela × 102 53.92±0.12
Cine × 102 78.30±0.70
mscat × 102 GeV -18.75±0.45
χ2/ D.o.F. 867.58/(1178− 6)

Table 6.1: Parameters of Background Fit.

The errors shown in Figure 6.1 are statistical only and represent a fit to the

background sideband region defined by:

P 2
T ∈ [0, 0.2]

(

GeV

c

)2

P 2
T electron ∈ [0, 0.2]

(

GeV

c

)2

P 2
T π ∈ [0, 0.2]

(

GeV

c

)2
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argument ∈ [−0.1, 0.04]
(

GeV

c

)2

ringnumber ∈ [0, 400] cm2. (6.15)

These values are quite robust but do show some non-statistical fluctuation when

analysis cuts and fit regions are varied. The systematic error due to the uncertainty

in these values is based not on their statistical precision but on the wider varia-

tion seen in the course of studying the background. In particular, the momentum

dependence of the MC background, mscat, varies by as much as 10%/100 GeV.

6.2.2 Asymmetry Fits

Our goal is to extract three measurements from the regenerator Ke3 asymmetry.

The first parameter represents a test of analyticity,

∆φρ = φρ − (−90◦(1.0 + α)) . (6.16)

The second parameter contributes to the precision understanding of indirect CP

violation, δL. The third parameter measures ∆S = ∆Q violation, <(x).

A large number of fits with various combinations of parameters floating, fixed or

constrained have been studied to understand the sensitivity of the fit to deviations in

the input parameters. Unless otherwise noted, the fits that follow use the Kπ2 values

of the kaon evolution and regeneration parameters, shown in Table 6.2, as fixed

constraints. The fiducial range of P̂ ∈ [30 GeV, 180 GeV] and Z ∈ [124 m, 154 m]

is considered with 5 GeV bins in momentum and 2 m bins in Z vertex.
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Parameter from Kπ2 fit Value
∆m/(1010h̄s−1) 0.5282± 0.0008
ΓS/(10

−10s−1) 1.1153± 0.0005
∣

∣

∣

f−f̄
k

∣

∣

∣

@70 GeV
/mbarn 1.1994± 0.0006

α -0.5437± 0.0011

χ2/ D.o.F.
348

331− 4

Table 6.2: Values of Kaon Evolution and Regeneration Parameters from Kπ2 Fit

Fit ∆φρ Raw δL × 106 χ2/D.o.F.

Baseline 0.0 Fixed 3419 Fixed
945.93

900

Simple −1.05(83)◦ 3419 Fixed
944.35

900− 1

Nominal −0.70(88)◦ 3556(93)
942.08

900− 2

Table 6.3: Fits for ∆φρ

Testing Analyticity

Table 6.3 shows the best fits for validating analyticity. The first row shows a baseline

χ2 with no free parameters. Analyticity is assumed (∆φρ = 0), and δL is fixed to

the uncorrected (raw) vacuum asymmetry in a similar kinematic range ((3419 ±

66)× 10−6[26]). The second row shows a simple fit; only ∆φρ is floated, resulting in

the most statistically powerful measurement. In the third row, our nominal fit, the

raw value of δL is floated as well. This is preferred, despite its reduced statistical

power, since decoupling the result from systematic effects of the asymmetry of the

detector’s particle ID efficiency is more important than the small loss of statistical

power. The uncorrelated error between the simple and nominal fits is 0.32◦. A

comparison of the asymmetry in the data with the fit prediction for the nominal

case can be seen in Figures 6.4 and 6.5.
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Measuring δL

Although the statistical precision of a δL measurement in the regenerator beam is not

as powerful as in the vacuum beam, the precision exceeds that of all measurements

prior to KTeV and contributes to our understanding of that number.

Fit δL × 106
∣

∣

∣

∣

∣

f − f̄
k

∣

∣

∣

∣

∣

@70 GeV
χ2/ D.o.F.

Nominal 3577± 89 1.1994 Fixed
942.71

900− 1

No BG 3556± 111 0.9853± 0.0076
931.04

900− 2

Table 6.4: Fits for δL

Assuming analyticity and fixing ∆φρ to zero, gives the results shown in the first

row of Table 6.4. This is the most statistically powerful way to extract the raw value

of δL from the regenerator beam Ke3 data. To turn this into an actual value for δL

the corrections for detector asymmetries laboriously determined in [26] are applied,

taking care to account for small differences between the cuts applied on vacuum and

regenerator analyses. The result after the −97× 10−6 correction is:

δL = (3480± 89)× 10−6. (6.17)

A systematic comparison to the vacuum beam result is postponed until the system-

atics section; however, I preemptively show a fit with the background simulation

turned off in the second row of Table 6.4. Note that the background has a huge

impact on the amplitude but an insignificant impact on δL.
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Fit <(x)× 104 δL × 106 χ2

Fix δL 36± 24 3417 Fixed
943.6226

900− 1

Nominal 12± 34 3547± 111
942.5494

900− 2

Table 6.5: Fits for <(x)

Searching for ∆S 6= ∆Q

The current best measurement of <(x) has an absolute precision of 61× 10−4 (CPLEAR [20]).

With all other parameters fixed, the statistical precision of our fit for <(x) is

24 × 10−4. Table 6.5 shows the fit results. Mildly correlated with δL and hugely

correlated with |f−| the systematic uncertainty of this result is governed by the

understanding of the scattered background. If no background is included in the fit

and the amplitude and <(x) are allowed to float, a very large deviation, ∆<(x) =

(450 ± 24) × 10−4, is observed. This sets the scale for the importance of the back-

ground. Note that in the same fit, the amplitude disagrees with the Kπ2 measure-

ment by 35σ, while with the correct background treatment the same comparison

differs by only 1.3σ. This difference diminishes to 0.3σ when δL is simultaneously

floated. For this reason we again choose to sacrifice a small amount of statistical

power for the more systematically robust fit with δL floating.
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Figure 6.4: The Charge Asymmetry vs. P̂ in Several Z Bins. The fitters prediction
is overlaid. The dotted line is δL.
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CHAPTER 7

SYSTEMATIC UNCERTAINTIES

In order to assign a systematic uncertainty to the fit results, each major piece of

the analysis chain is evaluated for weakness. Figure 7.1 augments the flow chart

introduced in Chapter 1 with the principal effects that this chapter seeks to quantify.

Section 7.1 shows the results to be self consistent. Arbitrary partition of the data

sample into time units or beam units does not impact the results. Section 7.2 shows

that variation of arbitrary parameters in the fitting algorithm have minimal impact

on the results. Section 7.3 addresses the impact of the large background on the fit

results. Section 7.4 considers the variation of the analysis cuts. Any variation of

the fit result due to variation in the cut values indicates a potential vulnerability in

the method. Section 7.5 addresses the impact on our fits of the underlying detector

asymmetry.

7.1 Consistency Checks

7.1.1 East-West

Although the detector acceptance may change between the east and west beam, the

physics does not. Any position-dependent efficiency difference between K+
e3 and K

−
e3

will result in a difference between the fit value in the east and west beams. Figure 7.2

shows the contrast between the illumination of electrons in the two beams. The pion

89
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Figure 7.1: Flow Chart of Systematic Effects

illumination contrast is similar. The results of the nominal fits on east and west

beams separately, Table 7.1, show no significant east/west difference.

Beam δ∆φρ
δ(δL)
×106

δ<(x)
×104

East 0.11◦ ± 1.26◦ 52± 47 3493± 126
West -1.52◦ ± 1.23◦ -28± 48 3663± 126

Table 7.1: Comparison of East and West Beam Fit Results



91

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

-1 -0.5 0 0.5 1

Left Bending Electrons

X @ DC1 (m)

M
il

li
on

 e
ve

nt
s 

pe
r 

2 
cm

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

-1 -0.5 0 0.5 1

Right Bending Electrons

X @ DC1 (m)

M
il

li
on

 e
ve

nt
s 

pe
r 

2 
cm

0

0.2

0.4

0.6

0.8

1

1.2

1.4

-1 -0.5 0 0.5 1

Left Bending Electrons

X @ CsI (m)

M
il

li
on

 e
ve

nt
s 

pe
r 

2 
cm

0

0.2

0.4

0.6

0.8

1

1.2

1.4

-1 -0.5 0 0.5 1

Right Bending Electrons

X @ CsI (m)

M
il

li
on

 e
ve

nt
s 

pe
r 

2 
cm

Figure 7.2: Illumination Difference Between the East and West Beams

7.1.2 Time Stability

Any variation as a function of running period would point to a detector instability

that is not understood. Figure 7.3 shows the variation of the ∆φρ as a function of

run period. The χ2 for these 8 points is 5.6/7 Degrees of Freedom.
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the purposes of this systematic check, δL and the background parameters were held
fixed to the values found in the nominal fit. χ2 = 7.55/(8− 1) for the time periods.
χ2 = 1.09/(2 − 1) for the two beams. The largest change from the plotted values
when the background is floated for each time period is 0.07◦.



93

δL (× 10-6)

2600
2800
3000
3200
3400
3600
3800
4000
4200
4400

R
un

 9
06

3-
 9

18
2

R
un

 9
18

2-
 9

29
6

R
un

 9
29

6-
 9

41
8

R
un

 9
41

8-
 9

66
9

R
un

 9
66

9-
 9

78
6

R
un

 9
78

6-
 9

94
1

R
un

 9
94

1-
10

15
6

R
un

 9
94

1-
10

25
9

E
as

t B
ea

m

W
es

t B
ea

m

× 
10

-6

Figure 7.4: δL for several time periods and for each beam independently.
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7.2 Fitter and Migration Systematics

7.2.1 No Kπ2 Constraint

A powerful test that the entire fitting apparatus is working is to remove the con-

straint on kaon evolution parameters derived from the Kπ2 data. The resulting fit

measures the values of ∆m, ΓS, α and |f−/k|@70. Alternatively, one can fix α and

|f−/k|@70 to theKπ2 values and measure ∆m, ΓS with theKe3 asymmetry. Table 7.2

shows the results of these two fits. When all parameters are floated, both ∆m and

α are 1.9σ low. When the regeneration parameters are fixed to the Kπ2 values, ∆m

is only 1.4σ low.

Floating: All ∆m,ΓS, δL

∆m/(1010h̄s−1) 0.5050± 0.0121 0.5169± 0.0082
ΓS/(10

−10s−1) 1.094± 0.031 1.107± 0.011
∣

∣

∣

f−f̄
k

∣

∣

∣

k=70 GeV
/mbarn 1.1837± 299 1.1994± Fixed

α -0.5729± 197 -0.54373± Fixed
δL/10

−6 3435± 213 3418± 145

χ2 / D.o.F.
937.36

900− 5

940.42

900− 3

Table 7.2: Fit Results without the Kπ2 constraints on the kaon evolution and re-
generation parameters.

7.2.2 Kπ2 Parameter Uncertainty

Parameter
shift
×104 δ∆φρ

δ(δL)
×106

δ<(x)
×104

∆m 8 -0.07◦ 8.2 -1.4
ΓS 4 -0.002◦ 2.0 0.9
α 10 0.09◦ -3.5 2.3
|f−|@70 GeV 6 -0.04◦ -4.5 -2.2

Table 7.3: Kπ2 Systematics.
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The variation of Kπ2 fit parameters within their error bars induces small changes

in the final fit values. Each parameter has been shifted by its uncertainty and the

three nominal fits repeated. Table 7.3 summarizes the resulting small shifts in the

fit values.

7.2.3 Momentum Binning in the Fitter

The fitter computes the asymmetry at the center of each P bin before using the

migration matrix to extract the prediction in P̂ . The known slope in the momentum

spectrum across a given P bin introduces a small bias that is not compensated for

by the fitter. In the lowest bins of P and Z the difference between bin center and

mean P can be as much as 0.3 GeV. To set an upper limit on the size of this bias,

the fit has been repeated with varying granularity in P . Refitting with half the

granularity will very nearly double the error due to this effect. Table 7.4 shows the

shifts that result when larger P bins are used.

P Bin Size δ∆φρ
δ(δL)
×106

δ<(x)
×104

5 GeV→ 10 GeV 0.064◦ 0.2 0.41
5 GeV→ 15 GeV -0.052◦ -0.4 1.68
5 GeV→ 30 GeV 0.19◦ 1.7 1.29

Table 7.4: Shift in Final Parameters When P Bin Size Is Increased

7.2.4 Z Vertex Resolution

One MC effect that does not cancel to first order in this analysis is the simulation

of the detector resolution. The resolution in momentum is explicitly included via

the migration matrix; the Z vertex resolution is not included. Figure 7.5 shows the

measured Z resolutions in coarse bins of P (real parent kaon momentum) and Z.
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Figure 7.5: Z Resolution in the MC.

Figure 7.6 shows the slight data/MC mismatch in the track momentum resolu-

tion. The slope in 1/p2, which comes from multiple scattering effects, is well modeled

but there is a small offset in the intercept, indicating that the MC resolution on hit

positions in the chambers is slightly too large. To set the scale of a possible bias

due to Z smearing, a Gaussian approximation of the resolution is convolved with

the expression for the rate (Equation 1.23) when doing the Z integral in each fit

bin. The width of the Gaussian is a function of P̂ and Z drawn from a polynomial

fit to the MC resolution, Figure 7.5. The resulting shifts are quite small, as seen in

Table 7.5.

δ∆φρ
δ(δL)
×106

δ<(x)
×104

Z resolution in fit 0.04◦ -0.8 0.67

Table 7.5: Shift in Final Parameters When Z Resolution Is Approximated in the
Fitter
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Figure 7.6: Track Resolution in Data and MC.

7.2.5 Shifts in Z Vertex

Small systematic shifts in reconstructed Z position relative to the generated position

are seen in the MC. For the Z bin closest to the regenerator, this shift is 0.7 cm on

average with a notable slope in P̂ . Offsetting Z in the fitter by 1.5 cm results in a
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0.03◦ shift in the answer, limiting the size of a possible systematic effect. The effect

of such a shift on <(x) is (8.9± 1.4)× 10−4 and the effect on δL is negligible.

7.2.6 Slope in Data/MC Ratio Versus Kaon Momentum

Any error in the momentum spectrum of the MC will lead to an inaccuracy of the

migration matrix and directly affect the measurement. The systematic impact of

the small step seen in the log(RP ) overlay (Figure 5.7) is estimated by artificially

shifting the Monte Carlo value of log(RP ) down by 7 × 10−4. The fit results are

very nearly identical to those caused by shifting mcoh by 10−4/GeV. This causes a

shift of 0.04◦ in ∆φρ. This is a much larger variation in slope than the statistical

precision of 2.3× 10−5 seen in Table 6.1. The impact on δL and <(x) is negligible.

7.2.7 Sumamry of Fitter and Migration Systematics

Table 7.6 summarizes the results of our various fits. A conservative approach is

taken, selecting the worst case momentum binning result. Although these errors are

not guaranteed to be perfectly independent, they have been combined in quadrature

to produce a final systematic.

Source Uncertainty

δ∆φρ
δ(δL)
×106

δ<(x)
×104

Kπ2 Fit 0.12◦ 10.2 3.6
Fit Binning 0.19◦ 1.7 1.7
Z Resolution 0.04◦ 0.8 0.7
Z Shift 0.03◦ - 10.0
P Slope 0.04◦ - -
Total 0.23◦ 10.4 10.4

Table 7.6: Summary of Fitter and Migration Systematics
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7.3 Background

Understanding the phase and the P̂ , Z shape of scattered background is very impor-

tant to the systematic understanding of our fit. Ignoring the background entirely

results in δ∆φρ = 15◦! However, the χ2 for such a fit is horrendous. The simple

step of allowing |f−| to float results in an excellent χ2 and δ∆φρ = −1.1◦. This is

surreptitiously equivalent to floating the level of a background opposite in phase to

the signal to dilute the asymmetry.

7.3.1 Cut Variation

To address concerns about the P̂ , Z shape of the scattered background we vary key

analysis cuts, effectively changing the background fraction, and study the resulting

shifts in the final fit parameters. Table 7.7 summarizes the shifts observed in the

fits. For ∆φρ/ fits, the ringnumber illumination that looked troubling in Figure 5.8

shows no sign of causing systematic troubles. The combination of background and

resolution tail effects on the argument distribution, however, are problematic.

The variation with argument cut is also the standout shift in the <(x) fits. The

philosophy applied to Table 7.7 to determine a systematic is to pick the largest

excursions and assign a value for which there is a 68% confidence level that the true

shift is closer to zero than what we measure. Applying this philosophy, one obtains

the summary in Table 7.8.

7.3.2 Simulation

Systematic contributions from the uncertainty in our background parameterization

are found by looking at the wide range of fits for the background level, slope and

P 2
T shape as well as the theoretical prediction of the background phase and con-
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Parameter New Cut δ∆φρ
δ<(x)
×104

110→80 -0.10±0.22◦ -5±1
ringnumber 110→100 -0.13±0.07◦ 0±10

110→120 0.01±0.06◦ -8±9
0.54→0.50 0.00±0.03◦ 0±1

P 2
T 0.54→0.58 0.00±0.02◦ 0±1

0.54→0.62 0.00±0.02◦ 0±1
0.54→0.50 0.00±0.04◦ 0±1

P 2
Te 0.54→0.58 0.00±0.03◦ 0±1

0.54→0.62 0.00±0.01◦ 0±1
0.54→0.50 -0.02±0.15◦ -5±5

P 2
Tπ 0.54→0.58 0.02±0.01◦ 1±1

0.54→0.62 0.02±0.02◦ 1±7
-0.002→0.000 -0.40±0.24◦ -22±9

argumentmin -0.002→-0.004 -0.04±0.10◦ -3±4
-0.002→-0.008 0.32±0.19◦ 10±6

argumentmax ∞→0.03 -0.07±0.03◦ 1±2

Table 7.7: Background Cut Systematics

Source Uncertainty

New Cut δ∆φρ
δ<(x)
×104

ringnumber 0.13◦ 5
P 2
T Pion 0.02◦ 5

argument 0.42◦ 23
Total 0.44◦ 24

Table 7.8: Summary of Background Cut Systematics

servatively estimating the uncertainty of each piece. Table 7.9 summarizes these

uncertainties and shows the variability of the fit parameters as each parameter is

permitted to move to its extreme.



101

Source Uncertainty

Parameter Shift δ∆φρ
δ<(x)
×104

1C Level 1% 0.08◦ 8
1C Phase 10◦ 0.20◦ 8

1C P Slope
10%

100 GeV
0.18◦ 12

1C P 2
T Slope

0.5

GeV2 0.02◦ 10

Total 0.28◦ 19

Table 7.9: Background Fit Systematics

7.4 Analysis Cuts

In order to quantify the robustness of the fit, every analysis cut is varied in turn

and the resulting fit recomputed. Table 7.10 shows the impact of this process on

the nominal analyticity fit and the <(x) fit.

Any cut that changes the answer by more than 1.5σ is included in the total

systematic. Table 7.11 shows those parameters which exceed this threshold and

the systematic uncertainty assigned for each. For the analyticity test, vertex χ2,

electron E/P , pion E/P and Pπ0KIN all cross the 1.5σ rubicon, but induce only

small shifts in the answer. The variation with minimum electron energy, however,

is both large and poorly determined, leading to the single biggest systematic in this

analysis. For the <(x) measurement the same 4 distributions (vertex χ2, electron

E/P , pion E/P and Pπ0KIN ) contribute a little, but the variation with minimum

cell separation dominates the total, and the regenerator veto comes into the picture.

Note that for the regenerator veto, the shift resulting from tightening the cut is used

instead of the large shift seen when this cut is relaxed. In practice, loosening the

regenerator cut this much causes a huge enhancement to the inelastic component

of the scattered background (a factor of 3 increase), and the fits to the background
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sensitive sidebands look much worse (χ2 : 873 → 1253). The fact that the fit

procedure works at all over that dynamic range of background levels is a testament

to the stability of this approach.

Parameter Shift δ∆φρ
δ<(x)
×104

Max Offmag χ2 500→1000 0.01◦ ± 0.13◦ 0± 1
Max Vertex χ2 100→500 0.08◦ ± 0.02◦ 5± 1
Max Regenerator 2→18 MIPS -0.20◦ ± 0.23◦ -11± 7
Max Regenerator 2→1.5 MIPS -0.24◦ ± 0.20◦ -6± 3
Max Lead Module 0.7→0.3 MIPS 0.09◦ ± 0.18◦ 1± 6
Max Lead Module 0.7→2.0 MIPS -0.04◦ ± 0.12◦ -1± 4
Min Elec. EOP 0.94→0.90 -0.09◦ ± 0.06◦ -4± 1
Max Elec. EOP 10.00→1.05 0.11◦ ± 0.05◦ 5± 1
Max π EOP 0.85→0.80 0.11◦ ± 0.09◦ 1± 2
Max π EOP 0.85→0.90 -0.06◦ ± 0.06◦ -3± 2
Min Pπ 8→5 GeV -0.00◦ ± 0.13◦ 2± 11
Min Pπ 8→12 GeV 0.11◦ ± 0.25◦ 2± 5
Min Pe 8→5 GeV 0.15◦ ± 0.19◦ 11± 8
Min Pe 8→10 GeV 0.45◦ ± 0.27◦ -2± 10
Min Pe 8→12 GeV 0.63◦ ± 0.39◦ -4± 15
Min ∆X,Y,R 3→10 cm -0.10◦ ± 0.29◦ -6± 10
Min Cell Sep. 3→0 -0.11◦ ± 0.29◦ -3± 11
Min Cell Sep. 3→4 0.11◦ ± 0.20◦ 13± 8
Pπ0KIN 0→-0.02 -0.14◦ ± 0.03◦ -4± 2

Table 7.10: Analysis Cut Systematics

Source Uncertainty

Parameter δ∆φρ
δ<(x)
×104

Vertex χ2 0.08◦ 5
Mimimum Cell Separation - 17
Regenerator Veto - 7
Electron E/P 0.15◦ 5
Pion E/P 0.08◦ 4
Minimum Pe 0.67◦ -
Pπ0KIN 0.14◦ 5
Total 0.71 21

Table 7.11: Summary of Analysis Cut Systematics
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7.5 Non-canceling Detector Asymmetry

KTeV’s publication [26] of the vacuum beam Ke3 asymmetry describes the handful

of small effects which defeat the 4-fold way and lead to a systematic bias in the

observed raw asymmetry, as well as a methodology for correcting these effects. I

leverage as much of this work as possible in order to compute the biases in the

regenerator beam.

The conclusion of KTeV studies of vacuum Ke3 decay is that a correction of

−97±46 must be applied to the raw asymmetry in the vacuum beam to extract the

true asymmetry. Small differences in the cuts used for the vacuum and regenerator

analysis may contribute to a systematic change to that correction for the regenerator

beam. The momentum spectra in the two beams are also different, which may cause

efficiency asymmetries to contribute differently. The grossest example of such a

momentum-dependent effect can be seen in the variation of the charge asymmetry

of pion acceptance. Applying the momentum-dependent asymmetry measured in

reference [26], I see a −150 × 10−6 shift in the regenerator fit. This is in good

agreement with the shift for the vacuum asymmetry of (−156±10)×10−6 . Variation

of the kaon evolution and regeneration parameters and the background also play a

role in the systematic. Entirely removing the background but allowing the amplitude

to float results in a shift of only 21 × 10−6 and actually improves χ2 ! Assigning

the full 21× 10−6 of background, the 10× 10−6 from ∆m, 46× 10−6 from the error

estimate in the vacuum beam and 10 × 10−6 for momentum dependencies, results

in a 53× 10−6 systematic error on δL.

The fits testing analyticity and measuring <(x) are explicitly not sensitive to an

overall offset in the asymmetry (δL floats) but could be affected by the momentum

dependence of these corrections. To estimate the magnitude of such an effect, I
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again apply the measured pion loss asymmetry, which is both the largest correction

and the correction with the largest slope in the analysis. The resulting shift of the

phase is −0.03◦. The resulting shift in <(x) is 4× 10−4.

7.6 Summary

The systematic errors from all sources are combined in quadrature and summarzied

in Table 7.12.

Source Uncertainty

δ∆φρ
δ(δL)
×106

δ<(x)
×104

Fitting and Migration 0.23◦ 10 10
Background Cuts 0.44◦ 24
Background Fit 0.28◦ 21 19
Analysis Cuts 0.71◦ 21
Detector Asymmetry 0.03◦ 10 4
Asymmetry Correction 46
Total 0.91◦ 53 39

Table 7.12: Final Systematics



CHAPTER 8

CONCLUSION

By analyzing Ke3 decays downstream of the KTeV regenerator recorded in 1997,

we obtain three important results. First, we constrain any non-analytic behavior

of kaon-carbon scattering amplitude by precisely extracting both the regeneration

phase and amplitude from the observed time evolution of the Ke3 charge asymmetry.

Second, we see no evidence of ∆S = ∆Q violation, and set the best known bounds

on its potential extent as parameterized by <(x). Third, we obtain a precise measure

of δL, the indirect CP violation seen in the charge asymmetry of KL decay.

These measurements were made possible by the great success of the KTeV col-

laboration. Careful design of the overall experiment, great attention to detail for

each critical system, and a lot of sweat integrating the parts into a working whole,

guaranteed that a vastly complex detector was ready to turn protons arriving on

target into viable and plentiful data. Many full days and nights of vigilance ensured

that the living experiment continued to work. The drift chambers’ gas was peri-

odically replenished so the experiment could breath, the buzz of the audible spill

monitor pulsed like a heartbeat, 20 seconds on, 40 seconds off, though day shifts,

evening shifts and owl shifts. From the control room, numerous plots reported on

the health of the patient, often requiring quick attention. Doctors were paged, rapid

diagnoses made, and many minor surgeries evolved from cause for alarm to routine

procedure. Once recorded, the data became the focus of the collaboration, and the

105
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details involved in calibrating, simulating, and understanding the complex systems,

the moving parts, and their idiosyncrasies, required just as large an effort. Terabytes

of data were sorted and parsed. Hundreds of thousands of lines of code were written

and tested. Underneath all the effort to tame a large dataset, to understand a com-

plex detector, was the underlying physics of a deceptively simple process where one

parent kaon decays to three children: pion, electron, neutrino. In sufficient numbers,

this decay provides insight about how the world interacts with itself.

8.1 Analyticity

The observed momentum dependence of the magnitude of the amplitude is clearly

seen in the Kπ2 decays. Analyticity, itself based on the twin pillars of CPT con-

servation and weak causality, relates this magnitude to the phase of the scattering

amplitude. A standard resonance exchange model for the amplitude accurately de-

scribes the observations of the magnitude of the regeneration amplitude in the Kπ2

system and predicts the phase.

We have precisely measured the phase of kaon-Carbon scattering amplitude in

the 30-160 GeV momentum range using the charge asymmetry of the Ke3 decay.

Subject to numerous systematic cross checks, the difference in the measured and

predicted phases is:

φρ − φanalyticity = −0.70◦ ± 0.88◦ (stat)± 0.91◦ (syst) . (8.1)

A typical example of analyticity, the optical theorem, is introduced to aspiring

physicists as it relates to the scattering of ∼eV photons. This is now precisely

verified in the context of tens of GeV kaons. Figure 8.1 shows the comparison
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with the previous measurement of Carithers [19] along with the theoretical phase

evolution.
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Figure 8.1: Carbon Regeneration Phase vs. Kaon Momentum. Momentum range of
each dataset is shown. Tick marks on the KTeV point show the statistical component
of the error. The curve is the prediction for the phase based on a fit of the Kπ2

amplitude data to a nuclear screening model.

A specific critique [14] of the φ+− result focused on the resonance exchange model

used to predict the impact on the phase from magnitude variations outside of the ob-

served momentum range of the KTeV apparatus. The existence of exotic resonances

could induce a shift in phase by as much as 3◦ without having an observable impact

on the magnitude. The theoretical response [15] showed that the sensitivity of the

magnitude measurement severely limits this possibility. This measurement provides

direct evidence that no such large shifts are taking place. Implications on the type

of exotic scattering intermediaries outside of our momentum range that are ruled

out by this measurement depend greatly on the characteristics of the exotic. Rather



108

than try to map that space, we simply submit this observation as a constraint for

consideration.

8.2 ∆S = ∆Q

Fundamental to our understanding of semi-leptonic kaon decay is the notion that

the sign of the lepton charge effectively tags the strangeness of the parent kaon. An

S = 1, neutral kaon decays to a state with S = 0 and e−. An S = −1, neutral kaon

decays to a state with S = 0 and e+. The change in strangeness is the same as the

change in lepton change. ∆S = ∆Q. Valid Standard Model diagrams that violate

this rubric are possible, but they are suppressed by the additional role that the weak

interaction must play. Predictions of the amplitude of such diagrams are beyond

the precision available to current experiments. However, this dataset provides an

opportunity to limit the magnitude of any exotic interactions that might produce a

∆S 6= ∆Q final state. The complex parameter x characterizes this possibility. Our

dataset is sensitive to the real part of this parameter. We measure:

<(x) = (12± 33 (stat)± 39 (syst))× 10−4 . (8.2)

This is consistent with zero and slightly more precise than other measurements

available. No anomalies that might threaten the Standard Model prediction for

∆S 6= ∆Q behavior are seen. Figure 8.2 shows how our result compares to past

measurements. The new world average, assuming uncorrelated errors, is found to

be:

<(x) = (2.4± 38)× 10−4 . (8.3)
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Figure 8.2: History of <(x) Measurements. The line represents the new world
average with dotted 1σ band. The global fit gives a χ2 of 0.25 for 2 degrees of
freedom. [27, 28]

8.3 KL Asymmetry

The parameter δL is the charge asymmetry of the long lived kaon. CPT conserving

theory indicates that this should be twice the real part of the CP violating ampli-

tude, ε. KTeV’s measurements of vacuum beam Ke3 decays provide the most precise

measurement of this parameter. The regenerator beam has sufficient statistics to

make the second most precise measurement and to contribute contribute signifi-

cantly to the world average. The final measurement, which results from the fit and

a careful accounting of the small systematic biases in the detector acceptance, is:

δL = (3480± 89 (stat)± 53 (syst))× 10−6 (8.4)
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Figure 8.3 shows how this compares to other measurements. The part of the

systematic error uncorrelated with the vacuum beam is 21 × 10−6 resulting in a

difference between the two beams (raw asymmetries) of

(3419± 66− 3577± (90⊕ 21))× 10−6 = (−158± 113)× 10−6 = −1.4σ .(8.5)

The resulting KTeV average is

δL = (3472± 54(raw)− 97± 46)× 10−6 , (8.6)

and the new world average is

δL = (3366± 63)× 10−6 . (8.7)

8.4 Summary

The mechanics of the study of the kaon regeneration amplitude are messy. Massive

statistics are needed to push the limits of precision. A capable detector is needed to

limit background events and provide a well understood acceptance. A relatively large

amount of theory is required to model the incoherent backgrounds and to interpret

the results. At their core, the results described by this thesis are straightforward:

physics as we know it stands intact despite assault on three fronts. Our precise

fits for both the regeneration phase and the KL asymmetry confirmed with new

authority the underlying physics. Our null experiment in search of a surprising

effect in kaon decay obtained a null result. Semi-leptonic kaon decays are a window
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Figure 8.3: History of δL Measurements. The line represents the new world average
δL with dotted 1σ band. The global fit, treating the combined KTeV as a single
measurement gives a χ2 of 2.75 for 4 degrees of freedom. [29, 30, 31, 32, 33, 8]

into the revealing realm of the kaon system, but based on the investigations described

in this thesis, this niche of the Standard Model is safe.
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