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CP Violation in Kaon System
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If CPT: φε ≈ φε′

Re(ε′/ε) → direct CP violation

Im(ε′/ε) → CPT violation
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Previous Results

Re(ε′/ε) = [20.7 ± 1.48(stat) ± 2.39(syst)] × 10-4

Data from 1996 
and 1997
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Re(ε′/ε) Uncertainties (2003)

Statistical 
Uncertainty: 
1.5 × 10-4
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The KTeV Detector

Movable active 
regenerator to provide a 
coherent mixture of KL 
and KS and to veto 
scattered kaons
Charged spectrometer to 
reconstruct K → π+π−

decays
CsI calorimeter to 
reconstruct K → π0π0

decays

Vacuum 
Beam (KL)

Regenerator Beam 
(KL + ρKS)
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The KTeV Detector

Spectrometer
– 4 drift chambers

hexagonal cell geometry
2 planes each in x and y

– Dipole magnet
~412 MeV/c kick in x

– Calibrated using data and the known kaon mass
position resolution ~80 µm 
momentum resolution ~0.3%
absolute momentum scale ~0.01%

CsI Calorimeter
– 3100 CsI crystals

small blocks 2.5 × 2.5 × 50 cm3

large blocks 5.0 × 5.0 × 50 cm3

– Calibrated using in-situ laser system and 
momentum analyzed electrons from Ke3 decays

position resolution 1.2 – 2.4 mm
energy resolution ~0.6%
absolute energy scale ~0.05% CsI Calorimeter
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K → π+π− Analysis

Reconstructed Mass

Transverse Momentum
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Photon Pairing

Must determine which photons are 
from the same pion decay
Pair photons and calculate z for each 
pair using pion mass as constraint

Only correct pairing will yield 
consistent z for both pairs
Consistency of measured z 
quantified by pairing chi-squared 
variable
Choose incorrect pairing for 0.007% 
of 2π0 events
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Final Energy Scale

z vertex at regenerator edge

Before

After

z shift to match data to MC

1999:
z shift = 2.7 cm
energy scale 
adjustment = 0.05% 
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K → π0π0 Analysis

Reconstructed Mass
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Monte Carlo Simulation

MC used to make 
acceptance correction and 
simulate backgrounds to 
signal modes

– simulates kaon generation, 
propagation, and decay

– simulates detector geometry 
and response

– includes the effect of 
“accidental” activity by 
overlaying data events from 
accidental trigger
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Improvements to MC

More complete treatment of particle interactions with 
matter

– Ionization energy loss
– Improved Bremsstrahlung
– Improved delta rays
– Hadronic interactions in drift chambers

Improved electromagnetic shower simulation
– Shower library binned in incident particle angle
– Simulate effects of dead material (wrapping and shims) in 

CsI calorimeter
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Improvements: Transverse Shower 
Shape

2003: Includes transverse energy correction to match data and MC

Current: No transverse energy correction required

2003 current

2003

current

Fraction of energy per CsI block

Data/MC Ratio
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2003

Current

2003

Current

Improvements: Reconstructed Energy
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Improvements: Energy Linearity

Data Data

MC MC

Data

MC

Data

MC

2003                   Current 2003                   Current

Mass vs. Energy Mass vs. Photon Angle
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Improvements: Energy Scale
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Backgrounds

Scattering backgrounds
– Scattering in defining collimator
– Diffractive and inelastic scattering in regenerator treated as background
– Characterized using π+π− events with large pT

2

– Common to charged and neutral signal modes
– Level higher in neutral mode because no cut on pT

2

Use RING variable instead 
Non ππ backgrounds

– Semileptonic decays in charged mode
– K → 3π0 decays and hadronic production in neutral mode

Backgrounds simulated by MC, normalized to data sidebands, and 
subtracted
Total background levels

– ~0.1% in charged mode
– ~1% in neutral mode
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Systematic Uncertainties in Re(ε′/ ε)

Reduced 
from 1.47
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Uncertainty from Acceptance

Quality of MC simulation 
evaluated by comparing 
vacuum beam z vertex 
distributions between 
data and MC
Bias on Re(ε′/ ε) given 
by s∆z/6

– s is slope of data-MC 
ratio

� ∆z is difference 
between mean z value 
for vacuum and 
regenerator beams

Use π+π− and π0π0π0

slopes to determine 
systematic uncertainty
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Use MK vs EK plot to 
determine distortion which 
provides best data-MC match
0.1%/100 GeV nonlinearity 
applied to data for 1997 and 
1999
0.3%/100 GeV nonlinearity for 
1996
Change in Re(ε′/ε)

– 1996: -0.1 × 10-4

– 1997: -0.1 × 10-4

– 1999: +0.2 × 10-4

Systematic error: ±0.15 × 10-4

Nominal 
data

MC

Distorted 
data

Uncertainty from Energy Non-linearity
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Uncertainty from Energy Scale

±0.45 × 10-4

±0.59 × 10-4

±0.82 × 10-4
Total 
uncertainty:
±0.65 × 10-4
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Results

The final KTeV measurement 
of Re(ε′/ε) . . .
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Results: Re(ε′/ ε) 

Re(ε′/ ε) = [19.2 ± 1.1(stat) ± 1.8 (syst)] × 10-4

Re(ε′/ ε) = (19.2 ± 2.1) × 10-4

Probability = 13%

KTeV 2003: Re(ε′/ ε) = [20.7 ± 1.5(stat) ± 2.4 (syst)] × 10-4
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Results: Re(ε′/ ε) Crosschecks

Run Ranges

Half Samples

Momentum Bins
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Kaon Parameters: z-binned fit

Fit for ∆m, τS, φε, Re(ε′/ε), 
Im(ε′/ε)
Systematic uncertainties 
evaluated using same 
methods as Re(ε′/ε) analysis
Significant reduction in 
systematic uncertainties for 
φε and ∆φ

– Improved measurements of 
regenerator properties

– Nuclear screening effects 
(φε)

– Energy scale (∆φ)
CPT assumption applied a 
posteriori

Φ+- ≈ Φε + Im(ε′/ε)

Φ00 ≈ Φε - 2Im(ε′/ε)

∆Φ = Φ00 – Φ+-≈ -3Im(ε′/ε)
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Results: z-binned Fit

CPT assumption applied:
∆m = (5269.9 ± 12.3) × 106 ħs-1

τS = (89.623 ± 0.047) × 10-12 s

No CPT assumption:
∆m = (5279.7 ± 19.5) × 106 ħs-1

τS = (89.589 ± 0.070) × 10-12 s
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Results: ∆m and τS

KTeV 2003: ∆m = (5261 ± 13) × 106 ħs-1 KTeV 2003: τS = (89.65 ± 0.07) × 10-12 s
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Results: z-binned fit

KTeV + NA48

φε = (43.86 ± 0.63)°
φε - φSW = (0.40 ± 0.56)°

∆φ = (0.30 ± 0.35)°
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Results: CPT Tests

Consistent with CPT symmetry

KTeV 2003: φ+− = (44.1 ± 1.4)° KTeV 2003: ∆φ = (0.39 ± 0.50)°
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KTeV Results

Re(ε′/ ε) = (19.2 ± 2.1) × 10-4

∆m = (5269.9 ± 12.3) × 106 ħs-1

τS = (89.623 ± 0.047) × 10-12 s 
φε = (43.86 ± 0.63)°
φε − φSW = (0.40 ± 0.56)°
∆φ = (0.30 ± 0.35)°

Assuming CPT

No CPT assumption
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Extra Slides
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Backgrounds

**1999 backgrounds (other years vary slightly)**
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K → π+π− Backgrounds
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K → π0π0 Backgrounds

Vacuum Beam Regenerator Beam
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K → π0π0 Backgrounds

Vacuum Beam Regenerator Beam
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PDG: φ+-

KTeV 2003
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Regenerator Transmission

Transmission measured from data using KL → π+π-π0 decays
Dedicated trigger in 1999 improved statistical precision of 
measurement
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Screening corrections

Screening corrections 
use elastic and inelastic 
screening models
Check corrections by 
fitting regeneration 
amplitude in 
momentum bins
Good agreement at low 
momentum
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Screening corrections

For p binned fit, evaluate 
regeneration phase using 
Derivative Analyticity 
Relation (DAR)
Perform fit which floats the 
regeneration phase in p 
bins, DAR agrees well with 
data
Evaluate systematic 
uncertainty by comparing 
inelastic screening 
correction (nominal) to direct 
fit to data using DAR for the 
phase


